Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 42(1): 182-92, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194513

RESUMO

Although organic anion transporting polypeptide (OATP)-mediated hepatic uptake is generally conserved between rodents and humans at a gross pharmacokinetic level, the presence of three major hepatic OATPs with broad overlap in substrate and inhibitor affinity, and absence of rodent-human orthologs preclude clinical translation of single-gene knockout/knockin findings. At present, changes in pharmacokinetics and tissue distribution of pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein were studied in oatp1a/1b-knockout mice lacking the three major hepatic oatp isoforms, and in knockout mice with liver-specific knockin of human OATP1B1 or OATP1B3. Relative to wild-type controls, oatp1a/1b-knockout mice exhibited 1.6- to 19-fold increased intravenous and 2.1- to 115-fold increased oral drug exposure, due to 33%-75% decreased clearance, 14%-60% decreased volume of distribution, and ≤74-fold increased oral bioavailability, with the magnitude of change depending on the contribution of oatp1a/1b to pharmacokinetics. Hepatic drug distribution was 4.2- to 196-fold lower in oatp1a/1b-knockout mice; distributional attenuation was less notable in kidney, brain, cardiac, and skeletal muscle. Knockin of OATP1B1 or OATP1B3 partially restored control clearance, volume, and bioavailability values (24%-142% increase, ≤47% increase, and ≤77% decrease vs. knockout, respectively), such that knockin pharmacokinetic profiles were positioned between knockout and wild-type mice. Consistent with liver-specific humanization, only hepatic drug distribution was partially restored (1.3- to 6.5-fold increase vs. knockout). Exposure and liver distribution changes in OATP1B1-humanized versus knockout mice predicted the clinical impact of OATP1B1 on oral exposure and contribution to human hepatic uptake of statins within 1.7-fold, but only after correcting for human/humanized mouse liver relative protein expression factor (OATP1B1 = 2.2, OATP1B3 = 0.30).


Assuntos
Ácidos Heptanoicos/farmacocinética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Pravastatina/farmacocinética , Pirróis/farmacocinética , Sinvastatina/farmacocinética , Adolescente , Adulto , Idoso , Animais , Atorvastatina , Disponibilidade Biológica , Humanos , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Distribuição Tecidual/fisiologia , Adulto Jovem
2.
Drug Metab Dispos ; 41(11): 1967-71, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24009308

RESUMO

Although metformin hepatic distribution is critical to pharmacological activity, the drug is cleared by urinary excretion. Metformin hepatobiliary disposition was studied in rodents representative of clinical pharmacokinetics to elucidate why metformin is not appreciably eliminated in bile. On average, 1.0% ± 0.1% of the metformin oral dose was present in the liver (liver/plasma ratio = 4.5 ± 0.6) over a pharmacologically relevant dose and time range in mice (10-300 mg/kg; 1.5-2.5 hours; T(max) = 1.4 ± 0.5; bioavailability > 59%). Distribution to the kidneys was not markedly higher, which contained 0.87% ± 0.08% of the oral dose (kidney/plasma ratio = 11.9 ± 1.1). However, only 0.11% ± 0.02% of the intravenous and bioavailable oral dose was recovered in bile, suggesting that biliary excretion is not the only route of clearance for hepatic metformin. Consistent with negligible biliary excretion, pharmacokinetics were unaffected by bile duct cannulation, proving the effective absence of enterohepatic cycling. In single-pass liver perfusion studies, 2.4% ± 0.3% of the perfused metformin dose was distributed to the liver, which underwent >300-fold greater sinusoidal than biliary excretion during the subsequent drug-free washout perfusion (74.0% ± 39.3% versus 0.222% ± 0.003% recovery of hepatic metformin in perfusate versus bile, respectively). These studies demonstrate that despite similar magnitude of metformin liver and kidney distribution, metformin biliary excretion is negligible due to predominant sinusoidal efflux from the liver.


Assuntos
Ductos Biliares/metabolismo , Bile/metabolismo , Fígado/metabolismo , Metformina/farmacocinética , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Rim/metabolismo , Masculino , Camundongos , Perfusão , Ratos , Ratos Sprague-Dawley
3.
Drug Metab Dispos ; 40(9): 1825-33, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22711747

RESUMO

Transporter gene knockout rats are practically advantageous over murine models for pharmacokinetic and excretion studies, but their phenotypic characterization is lacking. At present, relevant aspects of pharmacokinetics, metabolism, distribution, and excretion of transporter probes [P-glycoprotein (P-gp): loperamide and paclitaxel; breast cancer resistance protein (Bcrp): sulfasalazine; and multidrug resistance-associated protein 2 (Mrp2): carboxydichlorofluorescein] were studied systematically across SAGE P-gp, Bcrp, and Mrp2 knockout rats. In Mdr1a knockout rats, loperamide and paclitaxel oral bioavailability was 2- and 4-fold increased, respectively, whereas clearance was significantly reduced (40-42%), consistent with the expected 10- to 20-fold reduction in paclitaxel excretion. N-Desmethyl-loperamide pharmacokinetics were not altered in any of the three knockouts after oral loperamide. In rats lacking P-gp, paclitaxel brain partitioning was significantly increased (4-fold). This finding is consistent with observations of loperamide central nervous system opioid pharmacology in Mdr1a knockout rats. Sulfasalazine oral bioavailability was markedly increased 21-fold in Bcrp knockouts and, as expected, was also 2- to 3-fold higher in P-gp and Mrp2 knockout rats. The sulfapyridine metabolite/parent ratio was decreased 10-fold in rats lacking Bcrp after oral, but not intravenous, sulfasalazine administration. Carboxydichlorofluorescein biliary excretion was obliterated in Mrp2 knockout rats, resulting in 25% decreased systemic clearance and 35% increased half-life. In contrast, carboxydichlorofluorescein renal clearance was not impaired in the absence of Mrp2, Bcrp, or P-gp. In conclusion, SAGE Mdr1a, Bcrp, and Mrp2 knockout rats generally demonstrated the expected phenotypes with respect to alterations in pharmacokinetics of relevant probe substrates; therefore, these knockout rats can be used as an alternative to murine models whenever a larger species is practically advantageous or more relevant to the drug discovery/development program.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/deficiência , Fluoresceínas/farmacocinética , Técnicas de Inativação de Genes , Loperamida/farmacocinética , Paclitaxel/farmacocinética , Sulfassalazina/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Biotransformação , Encéfalo/metabolismo , Fluoresceínas/administração & dosagem , Genótipo , Meia-Vida , Loperamida/administração & dosagem , Loperamida/sangue , Masculino , Taxa de Depuração Metabólica , Paclitaxel/administração & dosagem , Paclitaxel/sangue , Fenótipo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Ratos Wistar , Sulfassalazina/administração & dosagem , Sulfassalazina/sangue , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA