Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664452

RESUMO

In this study, we investigated preparation of gradient chitosan-matrix hydrogels through a novel freezing-gelling-thawing method. The influence of three types of graphene family materials (GFM), i.e., graphene oxide (GO), reduced graphene oxide (rGO), and poly(ethylene glycol) grafted graphene oxide (GO-PEG), as well as hydroxyapatite (HAp) on the physicochemical and biological properties of the composite hydrogels was examined in view of their potential applicability as tissue engineering scaffolds. The substrates and the hydrogel samples were thoroughly characterized by X-ray photoelectron spectroscopy, X-ray diffractometry, infrared spectroscopy, digital and scanning electron microscopy, rheological and mechanical analysis, in vitro chemical stability and bioactivity assays, as well as initial cytocompatibility evaluation with human umbilical cord Wharton's jelly mesenchymal stem cells (hUC-MSCs). We followed the green-chemistry approach and avoided toxic cross-linking agents, using instead specific interactions of our polymer matrix with tannic acid, non-toxic physical cross-linker, and graphene derivatives. It was shown that the most promising are the gradient hydrogels modified with GO-PEG and HAp.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Durapatita/química , Grafite/química , Hidrogéis/química , Nanocompostos/química , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Geleia de Wharton/química
2.
Appl Microbiol Biotechnol ; 97(13): 5743-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624658

RESUMO

The in vitro fermentation of several purified galacto-oligosaccharides (GOS), specifically the trisaccharides 4'-galactosyl-lactose and 6'-galactosyl-lactose and a mixture of the disaccharides 6-galactobiose and allolactose, was carried out. The bifidogenic effect of GOS at 1% (w/v) was studied in a pH-controlled batch culture fermentation system inoculated with healthy adult human faeces. Results were compared with those obtained with a commercial GOS mixture (Bimuno-GOS). Changes in bacterial populations measured through fluorescence in situ hybridization and short-chain fatty acid (SCFA) production were determined. Bifidobacteria increased after 10-h fermentation for all the GOS substrates, but the changes were only statistically significant (P<0.05) for the mixture of disaccharides and Bimuno-GOS. Acetic acid, whose formation is consistent with bifidobacteria metabolism, was the major SCFA synthesized. The acetate concentration at 10 h was similar with all the substrates (45-50 mM) and significantly higher than the observed for formic, propionic and butyric acids. All the purified GOS could be considered bifidogenic under the assayed conditions, displaying a selectivity index in the range 2.1-3.0, which was slightly lower than the determined for the commercial mixture Bimuno-GOS.


Assuntos
Bactérias/metabolismo , Fezes/microbiologia , Trissacarídeos/metabolismo , Bactérias/genética , Biota , Ácidos Graxos Voláteis/análise , Fermentação , Humanos , Hibridização in Situ Fluorescente
3.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363254

RESUMO

The aim of this work was to study the effect of the applied chemical reaction stimulation method on the morphology and structural properties of zinc oxide nanoparticles (ZnONPs). Various methods of chemical reaction induction were applied, including microwave, high potential, conventional resistance heater and autoclave-based methods. A novel, high potential-based ZnONPs synthesis method is herein proposed. Structural properties-phase purity, grain size-were examined with XRD methods, the specific surface area was determined using BET techniques and the morphology was examined using SEM. Based on the results, the microwave and autoclave syntheses allowed us to obtain the desired phase within a short period of time. The impulse-induced method is a promising alternative since it offers a non-equilibrium course of the synthesis process in an highly energy-efficient manner.

4.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207950

RESUMO

The hydrothermal method of obtaining nano zinc oxide doped with different contents of aluminum ions (III) was presented and discussed in this paper. Aqueous solution of Zn(NO3)2*6H2O and Al(NO3)3*9H2O salts mixture were used as the synthesis precursor. In order to reduce the process time all reactions were performed in a microwave reactor. The influence of process parameters and the content of impurity ions on the properties of synthesized nano zinc oxide were analyzed. In addition to zinc oxide doped with Al(III) ions, an additional spinel phase (ZnAl2O4) was obtained. The luminescent properties of nano zinc oxide as a function of the dopant ions were also discussed. Based on the luminescence measurements results, it was found that the luminescence intensity decreases with the increasing dopant content. The obtained materials are aimed to be implemented as luminescent materials in optoelectronic and sensors.

5.
Materials (Basel) ; 15(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35009391

RESUMO

The drawback of the hydrothermal technique is driven by the fact that it is a time-consuming operation, which greatly impedes its commercial application. To overcome this issue, conventional hydrothermal synthesis can be improved by the implementation of microwaves, which should result in enhanced process kinetics and, at the same time, pure-phase and homogeneous products. In this study, nanometric zinc aluminate (ZnAl2O4) with a spinel structure was obtained by a hydrothermal method using microwave reactor. The average ZnAl2O4 crystallite grain size was calculated from the broadening of XRD lines. In addition, BET analysis was performed to further characterize the as-synthesized particles. The synthesized materials were also subjected to microscopic SEM and TEM observations. Based on the obtained results, we concluded that the grain sizes were in the range of 6-8 nm. The surface areas measured for the samples from the microwave reactor were 215 and 278 m2 g-1.

6.
Nanomaterials (Basel) ; 10(9)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942775

RESUMO

Graphene oxide (GO) and reduced graphene oxide (RGO), due to their large active surface areas, can serve as a platform for biological molecule adhesion (both organic and inorganic). In this work we described methods of preparing composites consisting of GO and RGO and inorganic nanoparticles of specified biological properties: nanoAg, nanoAu, nanoTiO2 and nanoAg2O. The idea of this work was to introduce effective methods of production of these composites that could be used for future biomedical applications such as antibiotics, tissue regeneration, anticancer therapy, or bioimaging. In order to characterize the pristine graphene materials and resulting composites, we used spectroscopic techniques: XPS and Raman, microscopic techniques: SEM with and AFM, followed by X-Ray diffraction. We obtained volumetric composites of flake graphene and Ag, Au, Ag2O, and TiO2 nanoparticles; moreover, Ag nanoparticles were obtained using three different approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA