Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pers Med ; 14(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929869

RESUMO

Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows. This includes extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUSs) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of the standards used to describe genetic variants and the associated phenotypes when searching for relevant information to support clinical decision making. To address this, all five Swiss academic institutions for Medical Genetics joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its aim is to provide a protected environment for expert evidence sharing about individual variants to harmonize and upscale their significance interpretation at the clinical grade according to international standards. To corroborate the clinical assessment, the variant-related data will be combined with consented high-quality clinical information. Broader visibility will be achieved by interfacing with international databases, thus supporting global initiatives in personalized healthcare.

2.
Virchows Arch ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39443383

RESUMO

Somatic variant testing through next-generation sequencing (NGS) is well integrated into Swiss molecular pathology laboratories and has become a standard diagnostic method for numerous indications in cancer patient care. Currently, there is a wide variation in reporting practices within our country, and as patients move between different hospitals, it is increasingly necessary to standardize NGS reports to ease their reinterpretation. Additionally, as many different stakeholders-oncologists, hematologists, geneticists, pathologists, and patients-have access to the NGS report, it needs to contain comprehensive and detailed information in order to answer the questions of experts and avoid misinterpretation by non-experts. In 2017, the Swiss Institute of Bioinformatics conducted a survey to assess the differences in NGS reporting practices across ten pathology institutes in Switzerland. The survey examined 68 reporting items and identified 48 discrepancies. Based on these findings, the Swiss Society of Molecular Pathology initiated a Delphi method to reach a consensus on a set of recommendations for NGS reporting. Reports should include clinical information about the patient and the diagnosis, technical details about the sample and the test performed, and a list of all clinically relevant variants and variants of uncertain significance. In the absence of a consensus on an actionability scheme, the five-class pathogenicity scheme proposed by the ACMG/AMP guideline must be included in the reports. The Swiss Society of Molecular Pathology recognizes the importance of including clinical actionability in the report and calls on the European community of molecular pathologists and oncologists to reach a consensus on this issue.

3.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37171846

RESUMO

The Swiss Pathogen Surveillance Platform (SPSP) is a shared secure surveillance platform between human and veterinary medicine, to also include environmental and foodborne isolates. It enables rapid and detailed transmission monitoring and outbreak surveillance of pathogens using whole genome sequencing data and associated metadata. It features controlled data access, complex dynamic queries, dedicated dashboards and automated data sharing with international repositories, providing actionable results for public health and the vision to improve societal well-being and health.


Assuntos
Genoma Bacteriano , Saúde Única , Humanos , Suíça/epidemiologia , Metadados , Genômica/métodos
4.
Toxicol Appl Pharmacol ; 252(2): 85-96, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315101

RESUMO

The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid ß-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromanos/toxicidade , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/fisiologia , Tiazolidinedionas/toxicidade , Animais , Hipertrofia , Masculino , Proteômica/métodos , Ratos , Ratos Wistar , Troglitazona
5.
Mult Scler ; 17(1): 43-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855355

RESUMO

BACKGROUND: Autoimmune activation and deregulated apoptosis of T lymphocytes are involved in multiple sclerosis (MS). c-Jun N-terminal kinase (JNK) plays a role in T-cell survival and apoptosis. OBJECTIVES: The aim of this work was to investigate the role of the JNK-dependent apoptosis pathway in relapsing-remitting MS (RRMS). METHODS: The immunomodulatory effect of AS602801, a JNK inhibitor, was firstly evaluated on activated peripheral blood mononuclear cells (PBMCs) from healthy volunteers (HVs) and secondly in unstimulated purified CD4+, CD8+ and CD11b+ cells from RRMS patients and HVs. Moreover JNK/inflammation/apoptosis related genes were investigated in RRMS and HV samples. RESULTS: In activated PBMCs from HVs, we showed that AS602801 blocked T-lymphocyte proliferation and induced apoptosis. In RRMS CD4+ and CD8+ cells, AS602801 induced apoptosis genes and expression of surface markers, while in RRMS CD11b+ cells it induced expression of innate immunity receptors and co-stimulatory molecules. Untreated cells from RRMS active-phase patients significantly released interleukin-23 (IL-23) and interferon-gamma (IFN-γ) and expressed less apoptosis markers compared to the cells of HVs. Moreover, gene expression was significantly different in cells from RRMS active-phase patients vs. HVs. By comparing RRMS PBMCs in the active and stable phases, a specific genomic signature for RRMS was indentified. Additionally, CASP8AP2, CD36, ITGAL, NUMB, OLR1, PIAS-1, RNASEL, RTN4RL2 and THBS1 were identified for the first time as being associated to the active phase of RRMS. CONCLUSIONS: The analysis of the JNK-dependent apoptosis pathway can provide biomarkers for activated lymphocytes in the active phase of RRMS and a gene expression signature for disease status. The reported results might be useful to stratify patients, thereby supporting the development of novel therapies.


Assuntos
Apoptose , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Esclerose Múltipla Recidivante-Remitente/enzimologia , Transdução de Sinais , Subpopulações de Linfócitos T/enzimologia , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/patologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
7.
Stud Health Technol Inform ; 270: 884-888, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32570509

RESUMO

The Swiss Variant Interpretation Platform for Oncology is a centralized, joint and curated database for clinical somatic variants piloted by a board of Swiss healthcare institutions and operated by the SIB Swiss Institute of Bioinformatics. To support this effort, SIB Text Mining designed a set of text analytics services. This report focuses on three of those services. First, the automatic annotations of the literature with a set of terminologies have been performed, resulting in a large annotated version of MEDLINE and PMC. Second, a generator of variant synonyms for single nucleotide variants has been developed using publicly available data resources, as well as patterns of non-standard formats, often found in the literature. Third, a literature ranking service enables to retrieve a ranked set of MEDLINE abstracts given a variant and optionally a diagnosis. The annotation of MEDLINE and PMC resulted in a total of respectively 785,181,199 and 1,156,060,212 annotations, which means an average of 26 and 425 annotations per abstract and full-text article. The generator of variant synonyms enables to retrieve up to 42 synonyms for a variant. The literature ranking service reaches a precision (P10) of 63%, which means that almost two-thirds of the top-10 returned abstracts are judged relevant. Further services will be implemented to complete this set of services, such as a service to retrieve relevant clinical trials for a patient and a literature ranking service for full-text articles.


Assuntos
Biologia Computacional , Mineração de Dados , Indexação e Redação de Resumos , Humanos , MEDLINE , Suíça
8.
Front Microbiol ; 11: 591093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424794

RESUMO

Whole genome sequencing (WGS) enables high resolution typing of bacteria up to the single nucleotide polymorphism (SNP) level. WGS is used in clinical microbiology laboratories for infection control, molecular surveillance and outbreak analyses. Given the large palette of WGS reagents and bioinformatics tools, the Swiss clinical bacteriology community decided to conduct a ring trial (RT) to foster harmonization of NGS-based bacterial typing. The RT aimed at assessing methicillin-susceptible Staphylococcus aureus strain relatedness from WGS and epidemiological data. The RT was designed to disentangle the variability arising from differences in sample preparation, SNP calling and phylogenetic methods. Nine laboratories participated. The resulting phylogenetic tree and cluster identification were highly reproducible across the laboratories. Cluster interpretation was, however, more laboratory dependent, suggesting that an increased sharing of expertise across laboratories would contribute to further harmonization of practices. More detailed bioinformatic analyses unveiled that while similar clusters were found across laboratories, these were actually based on different sets of SNPs, differentially retained after sample preparation and SNP calling procedures. Despite this, the observed number of SNP differences between pairs of strains, an important criterion to determine strain relatedness given epidemiological information, was similar across pipelines for closely related strains when restricting SNP calls to a common core genome defined by S. aureus cgMLST schema. The lessons learned from this pilot study will serve the implementation of larger-scale RT, as a mean to have regular external quality assessments for laboratories performing WGS analyses in a clinical setting.

9.
Genes (Basel) ; 10(9)2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466373

RESUMO

Shotgun metagenomics using next generation sequencing (NGS) is a promising technique to analyze both DNA and RNA microbial material from patient samples. Mostly used in a research setting, it is now increasingly being used in the clinical realm as well, notably to support diagnosis of viral infections, thereby calling for quality control and the implementation of ring trials (RT) to benchmark pipelines and ensure comparable results. The Swiss NGS clinical virology community therefore decided to conduct a RT in 2018, in order to benchmark current metagenomic workflows used at Swiss clinical virology laboratories, and thereby contribute to the definition of common best practices. The RT consisted of two parts (increments), in order to disentangle the variability arising from the experimental compared to the bioinformatics parts of the laboratory pipeline. In addition, the RT was also designed to assess the impact of databases compared to bioinformatics algorithms on the final results, by asking participants to perform the bioinformatics analysis with a common database, in addition to using their own in-house database. Five laboratories participated in the RT (seven pipelines were tested). We observed that the algorithms had a stronger impact on the overall performance than the choice of the reference database. Our results also suggest that differences in sample preparation can lead to significant differences in the performance, and that laboratories should aim for at least 5-10 Mio reads per sample and use depth of coverage in addition to other interpretation metrics such as the percent of coverage. Performance was generally lower when increasing the number of viruses per sample. The lessons learned from this pilot study will be useful for the development of larger-scale RTs to serve as regular quality control tests for laboratories performing NGS analyses of viruses in a clinical setting.


Assuntos
Serviços de Laboratório Clínico/normas , Genoma Viral , Ensaio de Proficiência Laboratorial/métodos , Metagenoma , Metagenômica/normas , Análise de Sequência/normas , Genoma Humano , Humanos , Metagenômica/métodos , Análise de Sequência/métodos , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA