Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biopolymers ; 114(2): e23532, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825649

RESUMO

Perturbations in the native structure, often caused by stressing cellular conditions, not only impair protein function but also lead to the formation of aggregates, which can accumulate in the cell leading to harmful effects. Some organisms, such as plants, express the molecular chaperone HSP100 (homologous to HSP104 from yeast), which has the remarkable capacity to disaggregate and reactivate proteins. Recently, studies with animal cells, which lack a canonical HSP100, have identified the involvement of a distinct system composed of HSP70/HSP40 that needs the assistance of HSP110 to efficiently perform protein breakdown. As sessile plants experience stressful conditions more severe than those experienced by animals, we asked whether a plant HSP110 could also play a role in collaborating with HSP70/HSP40 in a system that increases the efficiency of disaggregation. Thus, the gene for a putative HSP110 from the cereal Sorghum bicolor was cloned and the protein, named SbHSP110, purified. For comparison purposes, human HsHSP110 (HSPH1/HSP105) was also purified and investigated in parallel. First, a combination of spectroscopic and hydrodynamic techniques was used for the characterization of the conformation and stability of recombinant SbHSP110, which was produced folded. Second, small-angle X-ray scattering and combined predictors of protein structure indicated that SbHSP110 and HsHSP110 have similar conformations. Then, the chaperone activities, which included protection against aggregation, refolding, and reactivation, were investigated, showing that SbHSP110 and HsHSP110 have similar functional activities. Altogether, the results add to the structure/function relationship study of HSP110s and support the hypothesis that plants have multiple strategies to act upon the reactivation of protein aggregates.


Assuntos
Proteínas de Saccharomyces cerevisiae , Sorghum , Animais , Humanos , Sorghum/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Saccharomyces cerevisiae , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
2.
Arch Biochem Biophys ; 690: 108468, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679196

RESUMO

Hsp90 is a ubiquitous, homodimer and modular molecular chaperone. Each Hsp90 protomer has three different domains, named the N-terminal domain (NTD), middle domain (MD) and C-terminal domain (CTD). The Hsp90 molecular cycle involves ATP binding and hydrolysis, which drive conformational changes. Hsp90 is critical for the viability of eukaryotic organisms, including the protozoan that causes the severe form of malaria, Plasmodium falciparum, the growth and differentiation of which are compromised when Hsp90 is inhibited. Here, we characterize the structure of a recombinant P. falciparum Hsp90 (PfHsp90) protein, as well as its MD (PfHsp90MD) and NTD plus MD (PfHsp90NMD) constructs. All the proteins were obtained with high purity and in the folded state. PfHsp90 and PfHsp90NMD interacted with adenosine nucleotides via the NTD, and Mg2+ was critical for strong binding. PfHsp90 behaved mostly as elongated and flexible dimers in solution, which dissociate with a sub-micromolar dissociation constant. The PfHsp90MD and PfHsp90NMD constructs behaved as globular and elongated monomers, respectively, confirming the importance of the CTD for dimerization. Small angle X-ray scattering data were obtained for all the constructs, and ab initio models were constructed, revealing PfHsp90 in an open conformation and as a greatly elongated and flexible protein.


Assuntos
Proteínas de Choque Térmico HSP90/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Proteínas Recombinantes/química , Adenosina/química , Trifosfato de Adenosina/química , Sítios de Ligação , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Hidrólise , Magnésio/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
3.
Mol Pharm ; 17(1): 70-83, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31617725

RESUMO

Azithromycin (AZ) is a broad-spectrum antibiotic with anti-inflammatory and antiquorum sensing activity against biofilm forming bacteria such as Pseudomonas aeruginosa. AZ administered by oral or parenteral routes, however, neither efficiently accesses nor remains in therapeutic doses inside pulmonary biofilm depths. Instead, inhaled nanocarriers loaded with AZ may revert the problem of low accessibility and permanence of AZ into biofilms, enhancing its antimicrobial activity. The first inhalable nanovesicle formulation of AZ, nanoarchaeosome-AZ (nanoARC-AZ), is here presented. NanoARC prepared with total polar archaeolipids (TPAs), rich in 2,3-di-O-phytanyl-sn-glycero-1-phospho-(3'-sn-glycerol-1'-methylphosphate) (PGP-Me) from Halorubrum tebenquichense archaebacteria, consisted of ∼180 nm-diameter nanovesicles, loaded with 0.28 w/w AZ/TPA. NanoARC-AZ displayed lower minimal inhibitory concentration and minimal bactericidal concentration, higher preformed biofilm disruptive, and anti-PAO1 activity in biofilms than AZ. NanoARC penetrated and disrupted the structure of the PAO1 biofilm within only 1 h. Two milliliters of 15 µg/mL AZ nanoARC-AZ nebulized for 5 min rendered AZ doses compatible with in vitro antibacterial activity. The strong association between AZ and the nanoARC bilayer, combined with electrostatic attraction and trapping into perpendicular methyl groups of archaeolipids, as determined by Laurdan fluorescence anisotropy, generalized polarization, and small-angle X-ray scattering, was critical to stabilize during storage and endure shear forces of nebulization. NanoARC-AZ was noncytotoxic on A549 cells and human THP-1-derived macrophages, deserving further preclinical exploration as enhancers of AZ anti-PAO1 activity.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Biofilmes/efeitos dos fármacos , Halorubrum/química , Nanocápsulas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Células A549 , Antibacterianos/administração & dosagem , Azitromicina/administração & dosagem , Azitromicina/toxicidade , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Células Epiteliais/efeitos dos fármacos , Humanos , Lipídeos/química , Lipossomos , Testes de Sensibilidade Microbiana , Mucinas/metabolismo , Nanocápsulas/ultraestrutura , Fosfolipídeos/química , Pseudomonas aeruginosa/enzimologia , Difração de Raios X
4.
Langmuir ; 34(44): 13296-13304, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30299102

RESUMO

Dibucaine (DBC) is one of the most potent long-acting local anesthetics, but it also has significant toxic side effects and low water solubility. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been proposed as drug-delivery systems to increase the bioavailability of local anesthetics. The purpose of the present study was to characterize SLNs and NLCs composed of cetyl palmitate or myristyl myristate, a mixture of capric and caprylic acids (for NLCs only) plus Pluronic F68 prepared for the encapsulation of DBC. We intended to provide a careful structural characterization of the nanoparticles to identify the relevant architectural parameters that lead to the desirable biological response. Initially, SLNs and NLCs were assessed in terms of their size distribution, morphology, surface charge, and drug loading. Spectroscopic techniques (infrared spectroscopy and electron paramagnetic resonance, EPR) plus small-angle X-ray scattering (SAXS) provided information on the interactions between nanoparticle components and their structural organization. The sizes of nanoparticles were in the 180 nm range with low polydispersity and negative zeta values (-25 to -46 mV). The partition coefficient of DBC between nanoparticles and water at pH 8.2 was very high (>104). EPR (with doxyl-stearate spin labels) data revealed the existence of lamellar arrangements inside the lipid nanoparticles, which was also confirmed by SAXS experiments. Moreover, the addition of DBC increased the molecular packing of both SLN and NLC lipids, indicative of DBC insertion between the lipids, in the milieu assessed by spin labels. Such structural information brings insights into understanding the molecular organization of these versatile drug-delivery systems which have already demonstrated their potential for therapeutic applications in pain control.


Assuntos
Anestésicos Locais/química , Dibucaína/química , Portadores de Fármacos/química , Nanopartículas/química , Espectroscopia de Ressonância de Spin Eletrônica , Miristatos/química , Nanopartículas/ultraestrutura , Palmitatos/química , Tamanho da Partícula , Poloxâmero/química , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
J Biol Chem ; 291(36): 18620-31, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402847

RESUMO

To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Mitocondriais/metabolismo , Neurospora crassa/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Bovinos , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Neurospora crassa/química , Neurospora crassa/genética , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-28167544

RESUMO

Visceral leishmaniasis is a fatal parasitic neglected disease affecting 1.5 million people worldwide. Based on a drug repositioning approach, the aim of this work was to investigate the in vitro immunomodulatory potential of buparvaquone (BPQ) and to establish a safe regimen to evaluate the in vivo efficacy of BPQ entrapped by negatively charged nanoliposomes (BPQ-LP) in Leishmania infantum-infected hamsters. Small-angle X-ray scattering, dynamic light scattering, and the ζ-potential were applied in order to study the influence of BPQ on the liposome structure. Our data revealed that BPQ was located in the polar-apolar interface, snorkeling the polar region, and protected against aggregation inside the lipophilic region. The presence of BPQ also decreased the Z-average hydrodynamic diameter and increased the surface charge. Compared to intravenous and intramuscular administration, a subcutaneous route was a more effective route for BPQ-LP; at 0.4 mg/kg, BPQ-LP reduced infection in the spleen and liver by 98 and 96%, respectively. Treatment for 5 days resulted in limited efficacy, but 10 days of treatment resulted in an efficacy similar to that of a 15-day regimen. The nanoliposomal drug was highly effective, with a mean 50% effective dose of 0.25 mg/kg, reducing the parasite load in bone marrow by 80%, as detected using quantitative PCR analysis. In addition, flow cytometry studies showed that BPQ upregulated cytokines as tumor necrosis factor, monocyte chemoattractant protein 1, interleukin-10 (IL-10), and IL-6 in Leishmania-infected macrophages, eliminating the parasites via a nitric oxide-independent mechanism. This new formulation proved to be a safe and effective treatment for murine leishmaniasis that could be a useful candidate against visceral leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Fatores Imunológicos/farmacologia , Leishmania infantum/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Lipossomos/química , Macrófagos/efeitos dos fármacos , Naftoquinonas/farmacologia , Administração Cutânea , Animais , Antiprotozoários/química , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Medula Óssea/parasitologia , Quimiocina CCL2/agonistas , Quimiocina CCL2/biossíntese , Cricetinae , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Fatores Imunológicos/química , Interleucina-10/agonistas , Interleucina-10/biossíntese , Interleucina-6/agonistas , Interleucina-6/biossíntese , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Lipossomos/farmacocinética , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/parasitologia , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Naftoquinonas/química , Carga Parasitária , Baço/efeitos dos fármacos , Baço/imunologia , Baço/parasitologia , Eletricidade Estática , Fator de Necrose Tumoral alfa/agonistas , Fator de Necrose Tumoral alfa/biossíntese
7.
Arch Biochem Biophys ; 600: 12-22, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27103305

RESUMO

Parasites belonging to the genus Leishmania are subjected to extensive environmental changes during their life cycle; molecular chaperones/co-chaperones act as protagonists in this scenario to maintain cellular homeostasis. Hop/Sti1 is a co-chaperone that connects the Hsp90 and Hsp70 systems, modulating their ATPase activities and affecting the fate of client proteins because it facilitates their transfer from the Hsp70 to the Hsp90 chaperone. Hop/Sti1 is one of the most prevalent co-chaperones, highlighting its importance despite the relatively low sequence identity among orthologue proteins. This multi-domain protein comprises three tetratricopeptides domains (TPR1, TPR2A and TPR2B) and two Asp/Pro-rich domains. Given the importance of Hop/Sti1 for the chaperone system and for Leishmania protozoa viability, the Leishmania braziliensis Hop (LbHop) and a truncated mutant (LbHop(TPR2AB)) were characterized. Structurally, both proteins are α-helix-rich and highly elongated monomeric proteins. Functionally, they inhibited the ATPase activity of Leishmania braziliensis Hsp90 (LbHsp90) to a similar extent, and the thermodynamic parameters of their interactions with LbHsp90 were similar, indicating that TPR2A-TPR2B forms the functional center for the LbHop interaction with LbHsp90. These results highlight the structural and functional similarity of Hop/Sti1 proteins, despite their low sequence conservation compared to the Hsp70 and Hsp90 systems, which are phylogenetic highly conserved.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/ultraestrutura , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/ultraestrutura , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/ultraestrutura , Leishmania braziliensis/enzimologia , Proteínas de Protozoários/química , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Ativação Enzimática , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
Langmuir ; 32(3): 873-81, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710233

RESUMO

Structural properties and polymorphism of monoolein (MO) in aqueous solutions have been studied for a long time, and the final picture can be considered definite. The presence of bicontinuous phases and the ability to encapsulate hydrophilic, hydrophobic, and amphiphilic compounds, together with the capability to protect and slowly release the entrapped molecules, designated MO phases as good matrices for the sustained release of drugs. Because phase stability, loading efficiency, and bioavailability are strongly correlated, the interplay between MO phases and entrapped compounds is worthy of investigation. In this paper, low angle X-ray diffraction has been used to describe the effects of a model protein (the cytochrome-c) on the monoolein cubic phases as a function of both incubation time and protein concentration in the soaking solutions. Results show that the MO polymorphism is strongly modified by the protein, underlying the very large affinity of the cytochrome-c toward monoolein. However, the different phases have a different sensibility to cytochrome-c, as phase transitions occur when the protein amount exceeds some different critical values, probably related to the structure characteristics (2 cytochrome-c per unit cell at the Pn3m to Im3m cubic phase transition and 10-20 cytochrome-c per unit cell at the Im3m to P4332 cubic phase transition). Moreover, although equilibration times resulted to be quite long (more than 10 days), the fraction of cytochrome-c incorporated into the MO phases is very high (up to 20% v/v inside the P4332 cubic phase). Such results are intriguing: even if they may be specific to the cytochrome-c/MO case, the need of assessing the structural characteristics of lipid matrices before their use as drug delivery systems is evident.


Assuntos
Citocromos c/química , Sistemas de Liberação de Medicamentos , Glicerídeos/química , Cristalização , Cristalografia por Raios X , Composição de Medicamentos , Modelos Moleculares , Transição de Fase , Soluções , Temperatura , Água/química
9.
J Biol Chem ; 289(20): 13838-50, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24671416

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional enzyme that has been associated with neurodegenerative diseases. GAPDH colocalizes with α-synuclein in amyloid aggregates in post-mortem tissue of patients with sporadic Parkinson disease and promotes the formation of Lewy body-like inclusions in cell culture. In a previous work, we showed that glycosaminoglycan-induced GAPDH prefibrillar species accelerate the conversion of α-synuclein to fibrils. However, it remains to be determined whether the interplay among glycosaminoglycans, GAPDH, and α-synuclein has a role in pathological states. Here, we demonstrate that the toxic effect exerted by α-synuclein oligomers in dopaminergic cell culture is abolished in the presence of GAPDH prefibrillar species. Structural analysis of prefibrillar GAPDH performed by small angle x-ray scattering showed a particle compatible with a protofibril. This protofibril is shaped as a cylinder 22 nm long and a cross-section diameter of 12 nm. Using biocomputational techniques, we obtained the first all-atom model of the GAPDH protofibril, which was validated by cross-linking coupled to mass spectrometry experiments. Because GAPDH can be secreted outside the cell where glycosaminoglycans are present, it seems plausible that GAPDH protofibrils could be assembled in the extracellular space kidnapping α-synuclein toxic oligomers. Thus, the role of GAPDH protofibrils in neuronal proteostasis must be considered. The data reported here could open alternative ways in the development of therapeutic strategies against synucleinopathies like Parkinson disease.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/farmacologia , Heparina/farmacologia , Multimerização Proteica/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/toxicidade , Sequência de Aminoácidos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Estrutura Secundária de Proteína
10.
Arch Biochem Biophys ; 565: 57-67, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25447839

RESUMO

The p23 protein is a chaperone widely involved in protein homeostasis, well known as an Hsp90 co-chaperone since it also controls the Hsp90 chaperone cycle. Human p23 includes a ß-sheet domain, responsible for interacting with Hsp90; and a charged C-terminal region whose function is not clear, but seems to be natively unfolded. p23 can undergo caspase-dependent proteolytic cleavage to form p19 (p231-142), which is involved in apoptosis, while p23 has anti-apoptotic activity. To better elucidate the function of the human p23 C-terminal region, we studied comparatively the full-length human p23 and three C-terminal truncation mutants: p231₋117; p231₋131 and p231₋142. Our data indicate that p23 and p19 have distinct characteristics, whereas the other two truncations behave similarly, with some differences to p23 and p19. We found that part of the C-terminal region can fold in an α-helix conformation and slightly contributes to p23 thermal-stability, suggesting that the C-terminal interacts with the ß-sheet domain. As a whole, our results suggest that the C-terminal region of p23 is critical for its structure-function relationship. A mechanism where the human p23 C-terminal region behaves as an activation/inhibition module for different p23 activities is proposed.


Assuntos
Chaperonas Moleculares/química , Temperatura Alta , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
11.
Phys Chem Chem Phys ; 17(11): 7498-506, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25706300

RESUMO

The effect of a small single-stranded oligonucleotide (ODN) on the structure of cationic DODAB vesicles was investigated by means of differential scanning calorimetry (DSC), small angle X-ray scattering (SAXS) and electron spin resonance (ESR) spectroscopy. ODN adsorption induced coalescence of vesicles and formation of multilamellar structures with close contact between lamellae. It also increased the phase transition temperature by 10 °C but decreased transition cooperativity. The ODN rigidified and stabilized the gel phase. In the fluid phase, a simultaneous decrease of ordering close to the bilayer surface and increase in bilayer core rigidity was observed in the presence of the ODN. These effects may be due not only to electrostatic shielding of DODAB head groups but also to superficial dehydration of the bilayers. The data suggest that oligonucleotides may induce the formation of a multilamellar poorly hydrated coagel-like phase below phase transition. These effects should be taken into account when planning ODN delivery employing cationic bilayer carriers.


Assuntos
Oligonucleotídeos/química , Compostos de Amônio Quaternário/química , Membranas Artificiais , Termodinâmica , Temperatura de Transição
12.
Biochim Biophys Acta ; 1828(11): 2419-27, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23792068

RESUMO

rBPI21 belongs to the antimicrobial peptide and protein (AMP) family. It has high affinity for lipopolysaccharide (LPS), acting mainly against Gram-negative bacteria. This work intends to elucidate the mechanism of action of rBPI21 at the membrane level. Using isothermal titration calorimetry, we observed that rBPI21 interaction occurs only with negatively charged membranes (mimicking bacterial membranes) and is entropically driven. Differential scanning calorimetry shows that membrane interaction with rBPI21 is followed by an increase of rigidity on negatively charged membrane, which is corroborated by small angle X-ray scattering (SAXS). Additionally, SAXS data reveal that rBPI21 promotes the multilamellarization of negatively charged membranes. The results support the proposed model for rBPI21 action: first it may interact with LPS at the bacterial surface. This entropic interaction could cause the release of ions that maintain the packed structure of LPS, ensuring peptide penetration. Then, rBPI21 may interact with the negatively charged leaflets of the outer and inner membranes, promoting the interaction between the two bacterial membranes, ultimately leading to cell death.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Membrana Celular/efeitos dos fármacos , Proteínas Recombinantes/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Calorimetria , Bactérias Gram-Negativas/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas Recombinantes/farmacologia , Espalhamento a Baixo Ângulo , Difração de Raios X
13.
Photochem Photobiol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38922888

RESUMO

Studies focusing on how photobiomodulation (PBM) can affect the structure and function of proteins are scarce in the literature. Few previous studies have shown that the enzymatic activity of Na,K-ATPAse (NKA) can be photo-modulated. However, the variability of sample preparation and light irradiation wavelengths have not allowed for an unequivocal conclusion about the PBM of NKA. Here, we investigate minimal membrane models containing NKA, namely, native membrane fraction and DPPC:DPPE proteoliposome upon laser irradiation at wavelengths 532, 650, and 780 nm. Interestingly, we show that the PBM on the NKA enzymatic activity has a bell-shaped profile with a stimulation peak (~15% increase) at around 20 J.cm-2 and 6 J.cm-2 for the membrane-bound and the proteoliposome samples, respectively, and are practically wavelength independent. Further, by normalizing the enzymatic activity by the NKA enzyme concentration, we show that the PBM response is related to the protein amount with small influence due to protein's environment. The stimulation decays over time reaching the basal level around 6 h after the irradiation for the three lasers and both NKA samples. Our results demonstrate the potential of using low-level laser therapy to modulate NKA activity, which may have therapeutic implications and benefits.

14.
ACS Chem Neurosci ; 15(4): 699-715, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38305187

RESUMO

Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Tauopatias , Humanos , Microscopia de Força Atômica/métodos , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
15.
Toxicon ; 238: 107571, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141971

RESUMO

Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.


Assuntos
Venenos de Cnidários , Venenos de Cnidários/química , DNA , Plasmídeos
16.
J Biol Chem ; 287(4): 2398-409, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22134915

RESUMO

Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.


Assuntos
Amiloide/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Heparina/química , Multimerização Proteica , alfa-Sinucleína/química , Amiloide/metabolismo , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Doença de Parkinson/metabolismo , Coelhos , alfa-Sinucleína/metabolismo
17.
J Appl Crystallogr ; 56(Pt 5): 1348-1360, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791360

RESUMO

Model lipid bilayers have been widely employed as a minimal system to investigate the structural properties of biological membranes by small-angle X-ray (SAXS) and neutron scattering (SANS) techniques. These have nanometre resolution and can give information regarding membrane thickness and scattering length densities (SLDs) of polar and apolar regions. However, biological membranes are complex systems containing different lipids and protein species, in which lipid domains can be dynamically assembled and disassembled. Therefore, SLD variations can occur within the biomembrane. In this work, a novel method has been developed to simulate SAXS and SANS profiles obtained from large unilamellar vesicles containing SLD inhomogeneities that are spatially correlated over the membrane surface. Such inhomogeneities are represented by cylindrical entities with equivalent SLDs. Stacking of bilayers is also included in the model, with no correlation between horizontal and vertical order. The model is applied to a lipid bilayer containing SLD inhomogeneities representing pores, lipid domains, and transmembrane, partially immersed and anchored proteins. It is demonstrated that all the structural information from the host lipid bilayer and from the SLD inhomogeneity can be consistently retrieved by a combined analysis of experimental SAXS and SANS data through the methodology proposed here.

18.
ACS Omega ; 8(41): 38101-38110, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867681

RESUMO

The effect of the ionic liquids (ILs) 1-methyl-3-tetradecylimidazolium chloride ([C14MIM][Cl]), 1-dodecyl-3-methylimidazolium chloride ([C12MIM][Cl]), and 1-decyl-methylimidazolium chloride ([C10MIM][Cl]) on the structure of bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, small-angle X-ray scattering (SAXS), and molecular dynamics (MD) simulations. Concerning the fluorescence measurements, we observed a blue shift and a fluorescence quenching as the IL concentration increased in the solution. Such behavior was observed for all three studied imidazolium-based ILs, being larger as the number of methylene groups in the alkyl chain increased. UV-vis absorbance measurements indicate that even at relatively small IL/protein ratios, like 1:1 or 1:2, ([C14MIM][Cl]) is able to change, at least partially, the sample turbidity. SAXS results agree with the spectroscopic techniques and suggest that the proteins underwent partial unfolding, evidenced by an increase in the radius of gyration (Rg) of the scattering particle. In the absence and presence of ([C14MIM][Cl]) = 3 mM BSA Rg increases from 29.1 to 45.1 Å, respectively. Together, these results indicate that the interaction of BSA with ILs is divided into three stages: the first stage is characterized by the protein in its native form. It takes place for protein/IL ≤ 1:2, and the interaction is predominantly due to the electrostatic forces provided by the negative charges on the surface of BSA and the cationic polar head of the ILs. In the second stage, higher IL concentrations induce the unfolding of the protein, most likely inducing the unfolding of domains I and III, in such a way that the protein's secondary structure is kept almost unaltered. In the last stage, IL micelles start to form, and therefore, the interaction with protein reaches a saturation point and free micelles may be formed. We believe that this work provides new information about the interaction of ILs with BSA.

19.
Biophys Rev ; 15(4): 611-623, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681101

RESUMO

The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-023-01075-4.

20.
Biophys Rev ; 15(4): 425-429, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37681111

RESUMO

The Latin American Federation of Biophysical Societies (LAFeBS) was constituted in 2007 in Montevideo, Uruguay, as a collaborative effort among the Biophysical Societies of Argentina, Brazil, and Uruguay. This visionary collaboration foresees the future of Biophysics in Latin America. In this commentary, we will briefly review the history of LAFeBS, the remarkable path undertaken since its foundation 16 years ago, and its key initiative, the Latin American Postgraduate Program in Biophysics (POSLATAM).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA