Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Syst Biol ; 17(5): e10267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031985

RESUMO

Novel invertebrate-killing compounds are required in agriculture and medicine to overcome resistance to existing treatments. Because insecticides and anthelmintics are discovered in phenotypic screens, a crucial step in the discovery process is determining the mode of action of hits. Visible whole-organism symptoms are combined with molecular and physiological data to determine mode of action. However, manual symptomology is laborious and requires symptoms that are strong enough to see by eye. Here, we use high-throughput imaging and quantitative phenotyping to measure Caenorhabditis elegans behavioral responses to compounds and train a classifier that predicts mode of action with an accuracy of 88% for a set of ten common modes of action. We also classify compounds within each mode of action to discover substructure that is not captured in broad mode-of-action labels. High-throughput imaging and automated phenotyping could therefore accelerate mode-of-action discovery in invertebrate-targeting compound development and help to refine mode-of-action categories.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/fisiologia , Inseticidas/farmacologia , Biologia de Sistemas/métodos , Animais , Anti-Helmínticos/química , Anti-Helmínticos/classificação , Automação , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Inseticidas/química , Inseticidas/classificação , Estrutura Molecular , Fenótipo
2.
Elife ; 122023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548652

RESUMO

Sleep is a nearly universal feature of animal behaviour, yet many of the molecular, genetic, and neuronal substrates that orchestrate sleep/wake transitions lie undiscovered. Employing a viral insertion sleep screen in larval zebrafish, we identified a novel gene, dreammist (dmist), whose loss results in behavioural hyperactivity and reduced sleep at night. The neuronally expressed dmist gene is conserved across vertebrates and encodes a small single-pass transmembrane protein that is structurally similar to the Na+,K+-ATPase regulator, FXYD1/Phospholemman. Disruption of either fxyd1 or atp1a3a, a Na+,K+-ATPase alpha-3 subunit associated with several heritable movement disorders in humans, led to decreased night-time sleep. Since atpa1a3a and dmist mutants have elevated intracellular Na+ levels and non-additive effects on sleep amount at night, we propose that Dmist-dependent enhancement of Na+ pump function modulates neuronal excitability to maintain normal sleep behaviour.


Assuntos
Sódio , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Homeostase , Sono/genética , Fosfoproteínas/metabolismo
3.
Commun Biol ; 5(1): 253, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322206

RESUMO

Tracking small laboratory animals such as flies, fish, and worms is used for phenotyping in neuroscience, genetics, disease modelling, and drug discovery. An imaging system with sufficient throughput and spatiotemporal resolution would be capable of imaging a large number of animals, estimating their pose, and quantifying detailed behavioural differences at a scale where hundreds of treatments could be tested simultaneously. Here we report an array of six 12-megapixel cameras that record all the wells of a 96-well plate with sufficient resolution to estimate the pose of C. elegans worms and to extract high-dimensional phenotypic fingerprints. We use the system to study behavioural variability across wild isolates, the sensitisation of worms to repeated blue light stimulation, the phenotypes of worm disease models, and worms' behavioural responses to drug treatment. Because the system is compatible with standard multiwell plates, it makes computational ethological approaches accessible in existing high-throughput pipelines.


Assuntos
Caenorhabditis elegans , Luz , Animais , Caenorhabditis elegans/genética , Fenótipo
4.
Curr Opin Neurobiol ; 44: 65-71, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28391130

RESUMO

All animals have a fundamental and unavoidable requirement for rest, yet we still do not fully understand the processes that initiate, maintain, and regulate sleep. The larval zebrafish is an optically translucent, genetically tractable model organism that exhibits sleep states regulated by conserved sleep circuits, thereby offering a unique system for investigating the genetic and neural control of sleep. Recent studies using high throughput monitoring of larval sleep/wake behaviour have unearthed novel modulators involved in regulating arousal and have provided new mechanistic insights into the role of established sleep/wake modulators. In addition, the application of computational tools to large behavioural datasets has allowed for the identification of neuroactive compounds that alleviate sleep symptoms associated with genetic neurological disorders.


Assuntos
Sono/genética , Peixe-Zebra/genética , Animais , Nível de Alerta/genética , Modelos Animais
5.
G3 (Bethesda) ; 6(8): 2397-405, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27260999

RESUMO

Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.


Assuntos
Dendritos/genética , Morfogênese/genética , Neurogênese/genética , Sistema Nervoso Periférico/crescimento & desenvolvimento , RNA Mensageiro/genética , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Estudo de Associação Genômica Ampla , Larva/genética , Larva/crescimento & desenvolvimento , Neurônios/metabolismo , Células Receptoras Sensoriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA