RESUMO
Two novel dissymmetric diterpenoids, biselisabethoxanes A and B (1 and 2), were isolated from the hexane extracts of the gorgonian coral Pseudopterogorgia elisabethae. Biselisabethoxane A (1) represents the first example of a marine-derived C40 dimer made of two distinct diterpene fragments, whereas biselisabethoxane B (2) is a fused heterodimer stemming from coupling of two amphilectane-based fragments. The structures of 1 and 2 were elucidated based on 1D and 2D NMR spectral data analysis. The molecular structure of 1 was subsequently confirmed by X-ray crystallographic analysis. When evaluated for their inhibitory effects in a series of well-established biological activity assays the isolated compounds were shown to moderately inhibit the growth of Mycobacterium tuberculosis.
Assuntos
Antozoários , Diterpenos , Mycobacterium tuberculosis , Animais , Antozoários/química , Diterpenos/química , Região do Caribe , Estrutura MolecularRESUMO
Two structurally analogous Mn-seamed C-alkylpyrogallol[4]arene (PgC n)-based metal-organic nanocapsules (MONCs) have been synthesized under similar reaction conditions and characterized by crystallographic, electrochemical, and magnetic susceptibility techniques. Both MONCs contain 24 Mn centers, but, somewhat surprisingly, marked differences in oxidation state distribution are observed upon analysis. One MONC contains exclusively MnII ions, while the other is a mixed-valence MnII/ MnIII assembly. We propose that these disparate oxidation state distributions arise from slight differences in pH achieved during synthesis, a factor that may lead to many spectacular new MONCs (and associated host-guest chemistries).
RESUMO
Under suitable conditions, C-alkylpyrogallol[4]arenes (PgCs) arrange into spherical metal-organic nanocapsules (MONCs) upon coordination to appropriate metal ions. Herein we present the synthesis and structural characterization of a novel FeII/FeIII-seamed MONC, as well as studies related to its electrochemical and magnetic behaviors. Unlike other MONCs that are assembled through 24 metal ions, this nanocapsule comprises 32 Fe ions, uncovering 8 additional coordination sites situated between the constituent PgC subunits. The FeII ions are likely formed by the reducing ability of DMF used in the synthesis, representing a novel synthetic route toward polynuclear mixed-valence MONCs.
RESUMO
Controlling the self-assembly of giant molecular building blocks into complex architectures with similar hierarchy to biological species remains a major challenge in supramolecular chemistry. Akin to protein structure, here we present the self-assembly of giant molecular nanocapsules into supramolecular coordination polymers with controlled hierarchy from primary to secondary and tertiary structures. First, we successfully prepared discrete nanocapsules (secondary structures) consisting of multicomponents, such as organic macrocycles and metal-based secondary building units (primary structures). Second, these nanocapsules can self-organize into various 2D and 3D supramolecular coordination polymers (tertiary structures) through coordination-driven assembly. The periphery 24 flexible alkyl chains and 24 metal ions available for potential coordination make these nanocapsules comparable to functionalized solid nanoparticles with non-specific binding sites at the surface and allow the nanocapsules to self-adjust their orientations and coordination modes to facilitate the self-assembly process. This study sheds light on the self-assembly of giant building units with complex molecular structures and opens up possibilities for the design of new hierarchical architectures with innovative properties and functions in many applications such as biomimics, biomedicine, and molecular devices.
RESUMO
Hypoxia-selective cytotoxins (HSCs) seek to exploit the oxygen-poor nature of tumor tissue for therapeutic gain. Typically, HSCs require activation by one-electron bioreductive enzymes such as NADPH:cytochrome P450 reductase (CYPOR). Thus, successful clinical deployment of HSCs may be facilitated by the development and implementation of diagnostic probes that detect the presence of relevant bioreductive enzymes in tumor tissue. The work described here develops analogues of the well-studied HSC tirapazamine (3-amino-1,2,4-benzotriazine 1,4-di- N-oxide, TPZ) as profluorescent substrates of the one-electron reductases involved in bioactivation of HSCs. Hypoxic metabolism of TPZ or 7-fluoro-TPZ by one-electron reductases releases inherently fluorescent mono- N-oxide metabolites that may serve as indicators, probes, markers, or stains for the detection of the enzymes involved in the bioactivation of HSCs. In particular, profluorescent compounds of this type can provide a foundation for fluorescence-based bioassays that help identify tumors responsive to HSCs.
Assuntos
Corantes Fluorescentes/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Pró-Fármacos/metabolismo , Triazinas/metabolismo , Triazinas/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Oxirredução , TirapazaminaRESUMO
Pincer ligated coordination complexes bearing bifunctional sites have been at the center of recent developments in reversible hydrogenation catalysis, especially in cases utilizing base metals. The influence of bifunctional ligands on low valent cobalt complexes is detailed here using comparisons between the PNP-pincer ligands MeN[CH2CH2(PR2)]2 and HN[CH2CH2(PR2)]2 (R = iPr, Cy). Comparative catalytic studies of CO2 hydrogenation show that cobalt(I) precatalysts bearing the tertiary amine ligand dramatically outperform those bearing the secondary amine pincer ligand. Despite strong similarities between the precatalyst ground state structure and the redox potentials of the two systems, ligand bifunctionality was found to be detrimental to catalyst productivity. The enhanced stability imparted by the MeN[CH2CH2(PR2)]2 ligand also enabled isolation and characterization of a zero-valent cobalt dicarbonyl species, which was used to study the catalytically active oxidation state of cobalt in CO2 hydrogenation.
RESUMO
Rhenium, the third-row congener of technetium, is often used to develop the macroscopic chemistry of potential 99mTc diagnostic radiopharmaceuticals. The rhenium analogues to 99mTc-furifosmin are being developed for potential radiotherapy of multidrug-resistant tumors. Complexes of the form trans-[MIII(PR3)2(N2O2-Schiff base)]+ are of interest for the potential imaging and treatment of multidrug-resistant tumors. Reaction of the tetradentate Schiff ligand 4,4'-[(1 E,1' E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)]bis(2,2,5,5-tetramethyl-2,5-dihydrofuran-3-ol) (tmf2enH2) with the M(V) starting materials ( nBu4N)[TcOCl4] and ( nBu4N)[ReOCl4] gave the monomeric products trans-[TcOCl(tmf2en)] and trans-[ReOCl(tmf2en)], respectively. Reduction of in situ formed trans-[ReOCl(tmf2en)] by various tertiary phosphines yielded disubstitued Re(III) products of the general type trans-[ReIII(PR3)2(tmf2en)]+. The rhenium(III) compounds were found to be water-soluble and stable in aqueous solution. Reversible ReIII/ReIV and ReIII/ReII redox processes were observed at about 0.8-0.9 and -0.65 to -0.8 V, respectively, for each of the rhenium(III) species. Reaction of in situ formed trans-TcOCl(tmf2en) with triethylphosphine yielded the reduced, disubstituted trans-[Tc(PEt3)2(tmf2en)]PF6. A reversible TcIII/TcII redox couple was observed for the technetium(III) species, about 200 mV less negative than their rhenium(III) analogues, in addition to an irreversible TcIII/TcIV process. All compounds were characterized using conventional spectroscopic techniques, single-crystal X-ray crystallography, and cyclic voltammetry.
RESUMO
A series of metallocene thorium complexes with mono- and bis(phosphido) ligands have been investigated with varying hues: (C5Me5)2Th(Cl)[P(Mes)2] (Mes = mesityl = 2,4,6-(CH3)3C6H2; dark red-purple), (C5Me5)2Th[P(Mes)(CH3)]2 (dark red-purple), (C5Me5)2Th(CH3)[P(Mes)2] (dark red-purple), (C5Me5)2Th(CH3)[P(Mes)(SiMe3)] (orange), (C5Me5)2Th(Cl)[P(Mes)(SiMe3)] (orange), (C5Me5)2Th[P(Mes)(SiMe3)]2 (orange), and (C5Me5)2Th[PH(Mes)]2 (pale yellow). While all of these complexes bear a mesityl group on phosphorus, the electronic structure observed differs depending on the other substituent (mesityl, methyl, trimethylsilyl, or hydrogen). This sparked an investigation of the electronic structure of these complexes using 31P NMR and electronic absorption spectroscopy in concert with time-dependent density functional theory calculations.
RESUMO
The two-dimensional framework of nickel-seamed hexameric metal-organic nanocapsules has been synthesized by connecting the tailed hydroxyl groups of C-propan-3-ol pyrogallol[4]arene with adjacent hexameric capsules via nickel-hydroxyl coordination. In addition, functionalization of nanocapsules with multiple pyridine molecules at the capsule surface prevents them from assembling into hierarchical structures and leads to the formation of discrete nickel-seamed pyrogallol[4]arene nanocapsules. This work shows that surface functionalization of nanocapsules is an effective and innovative method of controlling the assembly of these nanometric building blocks.
RESUMO
Novel supramolecular nanocapsules based on metal-directed assembly have captured tremendous interest due to their applications in fields such as catalysis, selective gas adsorption, and biomedicine. Functionalization of metal-organic nanocapsules (MONCs) by using organic ligands with different pendant groups affords more complexity to the structure and may lead to novel properties. In this work, we report the solvothermal synthesis of a group of magnesium-based MONCs using C-alkylpyrogallol[4]arenes with varying alkyl chain lengths. The structures of these nanocapsules are characterized by single-crystal X-ray diffraction analysis. As expected, a progression in size of the nanocapsules is observed as the alkyl chain length increases. The effect of the chain length on the solubility of MONCs in water has been determined. This work shows the generality of the solvothermal approach for the synthesis of MONCs with different organic ligands and demonstrates that surface functionalization of MONCs may serve as an effective way to tailor their properties. The unique biocompatible nature and inherent large cavity of these magnesium-based MONCs make these nanocapsules promising for potential applications in biomedicine.
RESUMO
BACKGROUND: The Bundled Payments for Care Improvement (BPCI) initiative and the Arkansas Payment Improvement (API) initiative seek to incentivize reduced costs and improved outcomes compared with the previous fee-for-service model. Before participation, our practice initiated a standardized clinical pathway (CP) to reduce length of stay (LOS), readmissions, and discharge to postacute care facilities. METHODS: This practice implemented a standardized CP focused on patient education, managing patient expectations, and maximizing cost outcomes. We retrospectively reviewed all primary total joint arthroplasty patients during the initial 2-year "at risk" period for both BPCI and API and determined discharge disposition, LOS, and readmission rate. RESULTS: During the "at risk" period, the average LOS decreased in our total joint arthroplasty patients and our patients discharged home >94%. Patients within the BPCI group had a decreased discharge to home and decreased readmission rates after total hip arthroplasty, but also tended to be older than both API and nonbundled payment patients. CONCLUSION: While participating in the BPCI and API, continued use of a standardized CP in a high-performing, high-volume total joint practice resulted in maintenance of a low-average LOS. In addition, BPCI patients had similar outcomes after total knee arthroplasty, but had decreased rates of discharge to home and readmission after total hip arthroplasty.
Assuntos
Artroplastia de Quadril/economia , Artroplastia do Joelho/economia , Procedimentos Clínicos/economia , Pacotes de Assistência ao Paciente/economia , Idoso , Idoso de 80 Anos ou mais , Planos de Pagamento por Serviço Prestado , Feminino , Gastos em Saúde , Humanos , Tempo de Internação , Masculino , Medicare/economia , Pessoa de Meia-Idade , Alta do Paciente/estatística & dados numéricos , Estudos Retrospectivos , Risco , Cuidados Semi-Intensivos , Estados UnidosRESUMO
BACKGROUND: We compared the effectiveness of low-molecular-weight (MW) hyaluronic acid (HA) injections (LMWHA), moderate-MW HA injections (MMWHA), and high-MW HA injections (HMWHA) for prevention or delay of knee surgery in patients with knee osteoarthritis. METHODS: An observational cohort study using LifeLink Plus claims (2006-2015) was used. The primary outcome measure of the study included all surgical interventions of the knee. The secondary outcome measures were the following: (1) unicompartmental knee arthroplasty or total knee arthroplasty and (2) total knee arthroplasty only. A high-dimensional propensity score (hdPS) using 1:1 matching was used to adjust for confounding. The likelihood of each outcome was assessed using Cox proportional hazard models. RESULTS: A cohort of 30,417 incident HA users with knee osteoarthritis met our inclusion-exclusion criteria. There was no difference in the likelihood of composite surgical events between LMWHA users (hazard ratio, 0.939; 95% confidence interval, 0.870-1.013) and MMWHA users (hazard ratio, 1.032; 95% confidence interval, 0.952-1.119) when compared with HMWHA users in a matched hdPS analysis. However, a significantly lower likelihood for all outcome measures was demonstrated in LMWHA and MMWHA users compared with HMWHA users when hdPS was not used. CONCLUSION: There was no significant difference in the likelihood of surgical interventions between LMWHA, MMWHA, and HMWHA users after accounting for empirically derived confounders.
Assuntos
Ácido Hialurônico/uso terapêutico , Osteoartrite do Joelho/terapia , Viscossuplementos/uso terapêutico , Adulto , Idoso , Artroplastia do Joelho , Estudos de Coortes , Feminino , Humanos , Injeções Intra-Articulares , Articulação do Joelho/cirurgia , Masculino , Pessoa de Meia-Idade , Peso Molecular , Procedimentos Ortopédicos , Pontuação de PropensãoRESUMO
Many 1,2,4-benzotriazine 1,4-dioxides display the ability to selectively kill the oxygen-poor cells found in solid tumors. As a result, there is a desire for synthetic routes that afford access to substituted 1,2,4-benzotriazine 1-oxides that can be used as direct precursors in the synthesis of 1,2,4-benzotriazine 1,4-dioxides. Here we describe the use of Suzuki-Miyaura and Buchwald-Hartwig cross-coupling reactions for the construction of various 1,2,4-benzotriazine 1-oxide analogs bearing substituents at the 3-, 6-, and 7-positions.
RESUMO
The reaction of (C5 Me5 )2 Th(CH3 )2 with the phosphonium salts [CH3 PPh3 ]X (X=Cl, Br, I) was investigated. When X=Br and I, two equivalents of methane are liberated to afford (C5 Me5 )2 Th[CHPPh3 ]X, rare terminal phosphorano-stabilized carbenes with thorium. These complexes feature the shortest thorium-carbon bonds (≈2.30â Å) reported to date, and electronic structure calculations show some degree of multiple bonding. However, when X=Cl, only one equivalent of methane is lost with concomitant formation of benzene from an unstable phosphorus(V) intermediate, yielding (C5 Me5 )2 Th[κ2 -(C,C')-(CH2 )(CH2 )PPh2 ]Cl. Density functional theory (DFT) investigations of the reaction energy profiles for [CH3 PPh3 ]X, X=Cl and I showed that in the case of iodide, thermodynamics prevents the production of benzene and favors formation of the carbene.
RESUMO
N-Methylation of methyl 5-hydroxynicotinate followed by reaction with a diene in the presence of triethylamine afforded (4+3) cycloadducts in good to excellent yields. High regioselectivity was observed with 1-substituted and 1,2-disubstituted butadienes. Density functional theory calculations indicate that the cycloaddition involves concerted addition of the diene onto the oxidopyridinium ion. The process provides rapid access to bicyclic nitrogenous structures resembling natural alkaloids.
RESUMO
The pincer ligand MeN[CH2CH2(P(i)Pr2)]2 ((iPr)PNP) was employed to support a series of cobalt(I) complexes, which were crystallographically characterized. A cobalt monochloride species, ((iPr)PNP)CoCl, served as a precursor for the preparation of several cobalt precatalysts for CO2 hydrogenation, including a cationic dicarbonyl cobalt complex, [((iPr)PNP)Co(CO)2](+). When paired with the Lewis acid lithium triflate, [((iPr)PNP)Co(CO)2](+) affords turnover numbers near 30â¯000 (at 1000 psi, 45 °C) for CO2-to-formate hydrogenation, which is a notable increase in activity from previously reported homogeneous cobalt catalysts. Though mechanistic information regarding the function of the precatalysts remains limited, multiple experiments suggest the active species is a molecular, homogeneous [((iPr)PNP)Co] complex.
RESUMO
Arsenic-72 ((72)As) and (77)As have nuclear properties useful for positron emission tomography (PET) and radiotherapy, respectively. The thiophilic nature of arsenic led to the evaluation of dithioarylarsines for potential use in radiopharmaceuticals. Several dithioarylarsines were synthesized from their arylarsonic acids and dithiols and were fully characterized by NMR, ESI-MS, and X-ray crystallography. This chemistry was translated to the no-carrier-added (nca) (77)As level. Because arsenic was available at the nca nanomolar level only as [(77)As]arsenate, this required addition of an aryl group directly to the As to form the [(77)As]arylarsonic acid. The [(77)As]arsenate was reduced from (77)As (V) to (77)As (III), and a modified Bart reaction was used to incorporate the aryl ring onto the (77)As, which was followed by dithiol addition. Various modifications and optimizations resulted in 95% radiochemical yield of nca [(77)As]p-ethoxyphenyl-1,2-ethanedithiolatoarsine.
Assuntos
Arsenicais/química , Compostos Radiofarmacêuticos/química , Arsenicais/síntese química , Técnicas de Química Sintética , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Espectrometria de Massas por Ionização por Electrospray , Tolueno/análogos & derivados , Tolueno/químicaRESUMO
New oval-shaped capsular and bilayer-type hydrogen-bonded arrangements of C-propyl-ol-pyrogallol[4]arene (PgC3-OH) with bipyridine-type spacer complexes are reported here. These complexes are engineered by virtue of derivatization of C-alkyl tails of pyrogallol[4]arene and the use of divergent spacer ligands. Complexes of PgC3-OH, PgC3-OH with bpy (4,4'-bipyridine) and PgC3-OH with bpa (1,2-bis(4-pyridyl)acetylene) have bilayer type arrangements; however, the use of hydrogen chloride causes protonation of bpy molecule, which is then entrapped flat within an offset oval-shaped dimeric hydrogen-bonded PgC3-OH nanocapsule. The presence of chloride anion in the crystal lattice controls the geometry of the resultant nanoassembly.
RESUMO
Molecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(µ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(µ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(µ3-I)2, 4, respectively. The first two compounds were characterized by UV-vis and electron paramagnetic resonance spectroscopies, and their molecular structure was determined by X-ray crystallography. Both di- and trinuclear mixed-valence intermediates were characterized for the reaction of compound 1 to compound 4, and the molecular structure of 4 was determined by X-ray crystallography. The electronic structure of each of these complexes was also investigated using density functional theory.
Assuntos
Amidinas/química , Cobre/química , Iodo/química , Compostos Organometálicos/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Oxirredução , Teoria QuânticaRESUMO
While a number of chelate strategies have been developed for the organometallic precursor fac-[M(I)(OH2)3(CO)3](+) (M = Re, (99m)Tc), a unique challenge has been to improve the overall function and performance of these complexes for in vivo and in vitro applications. Since its discovery, fac-[M(I)(OH2)3(CO)3](+) has served as an essential scaffold for the development of new targeted (99m)Tc based radiopharmaceuticals due to its labile aquo ligands. However, the lipophilic nature of the fac-[M(I)(CO)3](+) core can influence the in vivo pharmacokinetics and biodistribution of the complexes. In an effort to understand and improve this behavior, monosubstituted pyridine ligands were used to assess the impact of donor nitrogen basicity on binding strength and stability of fac-[M(I)(CO)3](+) in a 2 + 1 labeling strategy. A series of Re and (99m)Tc complexes were synthesized with picolinic acid as a bidentate ligand and 4-substituted pyridine ligands. These complexes were designed to probe the effect of pKa from the monodentate pyridine ligand both at the macro scale and radiochemical concentrations. Comparison of X-ray structural data and radiochemical solution experiments clearly indicate an increase in overall yield and stability as pyridine basicity increased.