RESUMO
BACKGROUND: The teaching of palliative care competencies is an essential component of undergraduate medical education. There is significant variance in the palliative care content delivered in undergraduate medical curricula, revealing the utility of reference standards to guide curricular development and assessment. To evaluate our university's undergraduate palliative care teaching, we undertook a curriculum mapping exercise, comparing official learning objectives to the national Educating Future Physicians in Palliative and End-of-Life Care (EFPPEC) and the international Palliative Education Assessment Tool (PEAT) reference objectives. METHODS: Multiple assessors independently compared our university's UGME learning objectives with EFPPEC and PEAT reference objectives to determine the degree-of-coverage. Visual curriculum maps were created to depict in which part of the curriculum each objective is delivered and by which medical specialty. RESULTS: Of 122 EFPPEC objectives, 55 (45.1%) were covered fully, 42 (34.4%) were covered partially, and 25 (20.5%) were not covered by university objectives. Of 89 PEAT objectives, 40 (44.9%) were covered fully, 35 (39.3%) were covered partially, and 14 (15.7%) were not covered by university objectives. CONCLUSIONS: The majority of EFPPEC and PEAT reference objectives are fully or partially covered in our university's undergraduate medical curriculum. Our approach could serve as a guide for others who endeavour to review their universities' specialty-specific medical education against reference objectives. Future curriculum development should target the elimination of identified gaps and evaluate the attainment of palliative care competencies by medical learners.
Assuntos
Educação de Graduação em Medicina , Educação em Enfermagem , Humanos , Cuidados Paliativos , Currículo , SoloRESUMO
There has been considerable research into the understanding of the healthy skin microbiome. Similarly, there is also a considerable body of research into whether specific microbes contribute to skin disorders, with atopic dermatitis (AD) routinely linked to increased Staphylococcus aureus (S. aureus) colonisation. In this study, the epidermal surface of participants was sampled using swabs, while serial tape-stripping (35 tapes) was performed to sample through the stratum corneum. Samples were taken from AD patients and healthy controls, and the bacterial communities were profiled by metabarcoding the universal V3-V4 16S rRNA region. Results show that the majority of bacterial richness is located within the outermost layers of the stratum corneum, however there were many taxa that were found almost exclusively at the very outermost layer of the epidermis. We therefore hypothesise that tape-stripping can be performed to investigate the 'core microbiome' of participants by removing environmental contaminants. Interestingly, significant community variation between AD patients and healthy controls was only observable at the epidermal surface, yet a number of individual taxa were found to consistently differ with AD status across the entire epidermis (i.e. both the epidermal surface and within the epidermis). Sampling strategy could therefore be tailored dependent on the hypothesis, with sampling for forensic applications best performed using surface swabs and outer tapes, while profiling sub-surface communities may better reflect host genome and immunological status.
Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/microbiologia , Staphylococcus aureus/genética , RNA Ribossômico 16S/genética , Epiderme/microbiologia , Pele/microbiologiaRESUMO
The aim of this study was to investigate the early-life development of the skin microbiome in atopic dermatitis. Nineteen infants with atopic dermatitis and 19 healthy infants were evaluated 3 times, at 3 months intervals, within the first 30 months of life. Tape-strips were collected from volar forearms, cheeks, and eczema lesions, and the skin microbiome was assessed by 16S rRNA sequencing. Both the community structure and richness of the skin microbiome of infants with atopic dermatitis differed significantly from that of healthy infants, with greater richness in healthy infants. For infants with atopic dermatitis, the community composition was not dominated by Staphylococci. For healthy infants, community composition and richness correlated significantly with age, while such a pattern was not revealed in infants with atopic dermatitis. This suggests a slower maturation of the skin microbiome in atopic dermatitis, which precedes the staphylococcal predominance observed in older children and adults.
Assuntos
Dermatite Atópica , Microbiota , Humanos , Lactente , Adulto , Criança , Dermatite Atópica/diagnóstico , RNA Ribossômico 16S/genética , PeleRESUMO
Global warming is resulting in increased frequency of weather extremes. Root-associated fungi play important roles in terrestrial biogeochemical cycling processes, but the way in which they are affected by extreme weather is unclear. Here, we performed long-term field monitoring of the root-associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root-associated fungi was performed over a 3-yr period by metabarcoding the fungal internal transcribed spacer (ITS) region. Repeated soil testing and continuous climatic monitoring supplemented community data, and the relative effects of environmental and temporal variation were determined on the root-associated fungal community. Soil saturation and surface water were recorded throughout the early growing season of 2012, following extreme rainfall. This was associated with a crash in the richness and relative abundance of ectomycorrhizal fungi, with each declining by over 50%. Richness and relative abundance of saprophytes and pathogens increased. We conclude that extreme rainfall events may be important yet overlooked determinants of root-associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems.
Assuntos
Fungos/fisiologia , Micobioma , Raízes de Plantas/microbiologia , Chuva , Clima , Fungos/classificação , Geografia , Filogenia , Fatores de TempoRESUMO
The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.
Assuntos
Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Apoptose , Movimento Celular , Citoesqueleto/metabolismo , Humanos , Modelos Biológicos , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Quinases Ativadas por p21RESUMO
BACKGROUND: The composition of the root microbiome affects the host's growth, with variation in the host genome associated with microbiome variation. However, it is not known whether this intra-specific variation of root microbiomes is a consequence of plants performing targeted manipulations of them to adapt to their local environment or varying passively with other traits. To explore the relationship between the genome, environment and microbiome, we sampled seeds from teosinte populations across its native range in Mexico. We then grew teosinte accessions alongside two modern maize lines in a common garden experiment. Metabarcoding was performed using universal bacterial and fungal primers to profile their root microbiomes. RESULTS: The root microbiome varied between the two modern maize lines and the teosinte accessions. We further found that variation of the teosinte genome, the ancestral environment (temperature/elevation) and root microbiome were all correlated. Multiple microbial groups significantly varied in relative abundance with temperature/elevation, with an increased abundance of bacteria associated with cold tolerance found in teosinte accessions taken from high elevations. CONCLUSIONS: Our results suggest that variation in the root microbiome is pre-conditioned by the genome for the local environment (i.e. non-random). Ultimately, these claims would be strengthened by confirming that these differences in the root microbiome impact host phenotype, for example, by confirming that the root microbiomes of high-elevation teosinte populations enhance cold tolerance.
RESUMO
The Andean fever tree (Cinchona L.; Rubiaceae) is a source of bioactive quinine alkaloids used to treat malaria. C. pubescens Vahl is a valuable cash crop within its native range in northwestern South America, however, genomic resources are lacking. Here we provide the first highly contiguous and annotated nuclear and plastid genome assemblies using Oxford Nanopore PromethION-derived long-read and Illumina short-read data. Our nuclear genome assembly comprises 603 scaffolds with a total length of 904 Mbp (â¼82% of the full genome based on a genome size of 1.1 Gbp/1C). Using a combination of de novo and reference-based transcriptome assemblies we annotated 72,305 coding sequences comprising 83% of the BUSCO gene set and 4.6% fragmented sequences. Using additional plastid and nuclear datasets we place C. pubescens in the Gentianales order. This first genomic resource for C. pubescens opens new research avenues, including the analysis of alkaloid biosynthesis in the fever tree.
RESUMO
Several factors have been shown to influence the composition of the bacterial communities inhabiting healthy skin, with variation between different individuals, differing skin depths, and body locations (spatial-temporal variation). Atopic dermatitis (AD) is a chronic skin disease also affecting the skin-associated bacterial communities. While the effects of AD have been studied on these processes individually, few have considered how AD disrupts the spatial-temporal variation of the skin bacteria as a whole (i.e., considered these processes simultaneously). Here, we characterized the skin-associated bacterial communities of healthy volunteers and lesional and nonlesional skin of AD patients by metabarcoding the universal V3-V4 16S rRNA region from tape strip skin samples. We quantified the spatial-temporal variation (interindividual variation, differing skin depths, multiple time points) of the skin-associated bacteria within healthy controls and AD patients, including the relative change induced by AD in each. Interindividual variation correlated with the bacterial community far more strongly than any other factors followed by skin depth and then AD status. There was no significant temporal variation found within either AD patients or healthy controls. The bacterial community was found to vary markedly according to AD severity, and between patients without and with filaggrin mutations. Therefore, future studies may benefit from sampling subsurface epidermal communities and considering AD severity and the host genome in understanding the role of the skin bacterial community within AD pathogenesis rather than considering AD as a presence-absence disorder. IMPORTANCE The bacteria associated with human skin may influence skin barrier function and the immune response. Previous studies have attempted to understand the factors that regulate the skin bacteria, characterizing the spatial-temporal variation of the skin bacteria within unaffected skin. Here, we quantified the effect of AD on the skin bacteria on multiple spatial-temporal factors simultaneously. Although significant community variation between healthy controls and AD patients was observed, the effects of AD on the overall bacterial community were relatively low compared to other measured factors. Results here suggest that changes in specific taxa rather than wholesale changes in the skin bacteria are associated with mild to moderate AD. Further studies would benefit from incorporating the complexity of AD into models to better understand the condition, including AD severity and the host genome, alongside microbial composition.
Assuntos
Dermatite Atópica , Bactérias/genética , Dermatite Atópica/microbiologia , Voluntários Saudáveis , Humanos , RNA Ribossômico 16S/genética , Pele/microbiologiaRESUMO
Introduction. The pathogenesis of atopic dermatitis (AD) is not yet fully understood, but the bacterial composition of AD patients' skin has been shown to have an increased abundance of Staphylococcus aureus. More recently, coagulase-negative Staphylococcus (CoNS) species were shown to be able to inhibit S. aureus, but further studies are required to determine the effects of Staphylococcus community variation in AD.Aim. Here we investigated whether analysing metabarcoding data with the more recently developed DADA2 approach improves metabarcoding analyses compared to the previously used operational taxonomic unit (OTU) clustering, and can be used to study Staphylococcus community dynamics.Methods. The bacterial 16S rRNA region from tape strip samples of the stratum corneum of AD patients (non-lesional skin) and non-AD controls was metabarcoded. We processed metabarcoding data with two different bioinformatic pipelines (an OTU clustering method and DADA2), which were analysed with and without technical replication (sampling strategy).Results. We found that OTU clustering and DADA2 performed well for community-level studies, as demonstrated by the identification of significant differences in the skin bacterial communities associated with AD. However, the OTU clustering approach inflated bacterial richness, which was worsened by not having technical replication. Data processed with DADA2 likely handled sequencing errors more effectively and thereby did not inflate molecular richness.Conclusion. We believe that DADA2 represents an improvement over an OTU clustering approach, and that biological replication rather than technical replication is a more effective use of resources. However, neither OTU clustering nor DADA2 gave insights into Staphylococcus community dynamics, and caution should remain in not overinterpreting the taxonomic assignments at lower taxonomic ranks.
Assuntos
Código de Barras de DNA Taxonômico , Dermatite Atópica/microbiologia , Microbiota , Pele/microbiologia , Staphylococcus aureus/classificação , Adulto , Idoso , Análise por Conglomerados , Biologia Computacional , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto JovemRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Species of the genus Cinchona (Rubiaceae) have been used in traditional medicine, and as a source for quinine since its discovery as an effective medicine against malaria in the 17th century. Despite being the sole cure of malaria for almost 350 years, little is known about the chemical diversity between and within species of the antimalarial alkaloids found in the bark. Extensive historical Cinchona bark collections housed at the Royal Botanic Gardens, Kew, UK, and in other museums may shed new light on the alkaloid chemistry of the Cinchona genus and the history of the quest for the most effective Cinchona barks. AIM OF THE STUDY: We used High-Pressure Liquid Chromatography (HPLC) coupled with fluorescence detection (FLD) to reanalyze a set of Cinchona barks originally annotated for the four major quinine alkaloids by John Eliot Howard and others more than 150 years ago. MATERIALS AND METHODS: We performed an archival search on the Cinchona bark collections in the Economic Botany Collection housed in Kew, focusing on those with historical alkaloid content information. Then, we performed HPLC analysis of the bark samples to separate and quantify the four major quinine alkaloids and the total alkaloid content using fluorescence detection. Correlations between historic and current annotations were calculated using Spearman's rank correlation coefficient, before paired comparisons were performed using Wilcox rank sum tests. The effects of source were explored using generalized linear modelling (GLM), before the significance of each parameter in predicting alkaloid concentrations were assessed using chi-square tests as likelihood ratio testing (LRT) models. RESULTS: The total alkaloid content estimation obtained by our HPLC analysis was comparatively similar to the historical chemical annotations made by Howard. Additionally, the quantity of two of the major alkaloids, quinine and cinchonine, and the total content of the four alkaloids obtained were significantly similar between the historical and current day analysis using linear regression. CONCLUSIONS: This study demonstrates that the historical chemical analysis by Howard and current day HPLC alkaloid content estimations are comparable. Current day HPLC analysis thus provide a realistic estimate of the alkaloid contents in the historical bark samples at the time of sampling more than 150 years ago. Museum collections provide a powerful but underused source of material for understanding early use and collecting history as well as for comparative analyses with current day samples.
Assuntos
Cinchona/química , Casca de Planta/química , Alcaloides/química , Cromatografia Líquida de Alta Pressão/métodos , Alcaloides de Cinchona/química , Extratos Vegetais/química , Quinina/químicaRESUMO
Massively parallel DNA sequencing opens up opportunities for bridging multiple temporal and spatial dimensions in biodiversity research, thanks to its efficiency to recover millions of nucleotide polymorphisms. Here, we identify the current status, discuss the main challenges, and look into future perspectives on biodiversity genomics focusing on insects, which arguably constitute the most diverse and ecologically important group among all animals. We suggest 10 simple rules that provide a succinct step-by-step guide and best-practices to anyone interested in biodiversity research through the study of insect genomics. To this end, we review relevant literature on biodiversity and evolutionary research in the field of entomology. Our compilation is targeted at researchers and students who may not yet be specialists in entomology or molecular biology. We foresee that the genomic revolution and its application to the study of non-model insect lineages will represent a major leap to our understanding of insect diversity.
RESUMO
p21-activated kinase 1 (Pak1) induces cytoskeleton reorganization in part by regulating microtubule dynamics through an elusive mechanism. Using a yeast two-hybrid screen, we identified tubulin cofactor B (TCoB) (a cofactor in the assembly of the alpha/beta-tubulin heterodimers) as an interacting substrate of Pak1. Pak1 directly phosphorylated TCoB in vitro and in vivo on serines 65 and 128 and colocalized with TCoB on newly polymerized microtubules and on centrosomes. TCoB interacted with the GTPase-binding domain of Pak1 and activated Pak1 in vitro and in vivo. In contrast to wild-type TCoB, an S65A, S128A double mutant and knock-down of the endogenous TCoB or Pak1 reduced microtubule polymerization, suggesting that Pak1 phosphorylation is necessary for normal TCoB function. Overexpression of TCoB dramatically increased the number of gamma-tubulin-containing microtubule-organizing centers, a phenotype reminiscent of cells overexpressing Pak1. TCoB was overexpressed and phosphorylated in breast tumors. These findings reveal a novel role for TCoB and Pak1 in regulating microtubule dynamics.
Assuntos
Neoplasias da Mama/enzimologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Neoplasias da Mama/química , Feminino , Biblioteca Gênica , Humanos , Glândulas Mamárias Humanas/metabolismo , Proteínas Associadas aos Microtúbulos/análise , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Chaperonas Moleculares , Mutação/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia , Ativação Transcricional , Tubulina (Proteína)/análise , Tubulina (Proteína)/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Quinases Ativadas por p21RESUMO
PURPOSE: Insulin-like growth factor type I receptor (IGF-IR) plays critical roles in epithelial cancer cell development, proliferation, motility, and survival, and new therapeutic agents targeting IGF-IR are in development. Another receptor tyrosine kinase, the epidermal growth factor receptor (EGFR), is an established therapeutic target in head and neck cancer and IGF-IR/EGFR heterodimerization has been reported in other epithelial cancers. The present study was undertaken to determine the effects of anti-IGF-IR therapeutic targeting on cell signaling and cancer cell phenotypes in squamous cell carcinomas of the head and neck (SCCHN). EXPERIMENTAL DESIGN: The therapeutic efficacy of the human anti-IGF-IR antibody IMC-A12 alone and in combination with the EGFR blocking antibody cetuximab (C225) was tested in SCCHN cell lines and in tumor xenografts. RESULTS: IGF-IR was overexpressed in human head and neck cancer cell lines and tumors. Pretreatment of serum-starved 183A or TU159 SCCHN cell lines with A12 (10 microg/mL) blocked IGF-stimulated activation of IGF-IR, insulin receptor substrate (IRS)-1 and IRS-2, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase. A12 induced G(0)-G(1) cell cycle arrest and blocked cell growth, motility, and anchorage-independent growth. Stimulation of head and neck cancer cells with either IGF or EGF resulted in IGF-IR and EGFR heterodimerization, but only IGF caused activating phosphorylation of both receptors. Combined treatment with A12 and the EGFR blocking antibody C225 was more effective at reducing cell proliferation and migration than either agent alone. Finally, TU159 tongue cancer cell xenografts grown in athymic nude mice were treated thrice weekly for 4 weeks with vehicle, A12 (40 mg/kg i.p.), C225 (40 mg/kg i.p.), or both agents (n=8 mice per group; 2 tumors per mouse). Linear regression slope analysis showed significant differences in median tumor volume over time between all three treatment groups and the control group. Complete regression was seen in 31% (A12), 31% (C225), and 44% (A12 + C225) of tumors. CONCLUSION: Here we found the overexpression of IGF-IR, the functional heterodimerization of IGF-IR and EGFR, and effective therapeutic targeting of these receptors in human head and neck cancer xenografts.
Assuntos
Neoplasias de Cabeça e Pescoço/genética , Receptor IGF Tipo 1/genética , Somatomedinas/farmacologia , Animais , Antineoplásicos/toxicidade , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dimerização , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos , Camundongos Nus , Microscopia Confocal , Receptor IGF Tipo 1/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Transplante HeterólogoRESUMO
Here, we investigated the role of P21-activated kinase 1 (Pak1) signaling in the function of estrogen receptor-alpha (ER-alpha) as assessed by serine 305 (S305) activation and transactivation activity of ER. We found that Pak1 overexpression interfered with the antiestrogenic action of tamoxifen upon the ER transactivation function in hormone-sensitive cells. In addition, tamoxifen stimulation led to up-regulation of ER target genes in breast cancer cells with increased Pak1 expression. Tamoxifen also increased Pak1-ER interaction in tamoxifen-resistant but not in tamoxifen-sensitive cells. Results from the mutational studies discovered a role of ER-S305 phosphorylation in triggering a subsequent phosphorylation of serine 118 (S118), and these effects were further potentiated by tamoxifen treatment. We found that S305 activation-linked ER transactivation function requires a functional S118, and active Pak1 signaling is required for a sustaining S118 phosphorylation of the endogenous ER. All of these events were positively influenced by tamoxifen and thus may contribute toward the loss of antiestrogenic effect of tamoxifen. These findings suggest that Pak1 signaling-dependent activation of ER-S305 leads to an enhanced S118 phosphorylation presumably due to a conformational change, and such structural modifications may participate in the development of tamoxifen resistance.
Assuntos
Receptor alfa de Estrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/fisiologia , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Serina/metabolismo , Transdução de Sinais , Tamoxifeno/antagonistas & inibidores , Tamoxifeno/farmacologia , Ativação Transcricional , Regulação para Cima , Quinases Ativadas por p21RESUMO
Muskoxen (Ovibos moschatus) are ruminants adapted to a high-fibre diet. There is increasing interest in the role that gut microbes play in the digestion and utilization of these specialized diets but only limited data available on the gut microbiome of high-Arctic animals. In this study, we metabarcoded the 16S rRNA region of faecal samples from muskoxen of Northeast Greenland, Northwest Greenland and Norway, and quantified the effects of physiological and temporal factors on bacterial composition. We found significant effects of body mass, year of sampling and location on the gut bacterial communities of North East Greenland muskoxen. These effects were however dwarfed by the effects of location, emphasizing the importance of the local ecology on the gut bacterial community. Habitat alterations and rising temperatures may therefore have a considerable impact on muskoxen health and reproductive success. Moreover, muskoxen are hunted and consumed in Greenland, Canada and Alaska; therefore, this study also screened for potential zoonoses of food safety interest. A total of 13 potentially zoonotic genera were identified, including the genera Erysipelothrix and Yersinia implicated in recent mass die-offs of the muskoxen themselves.
RESUMO
Plants produce a multitude of metabolites that contribute to their fitness and survival and play a role in local adaptation to environmental conditions. The effects of environmental variation are particularly well studied within the genus Plantago; however, previous studies have largely focused on targeting specific metabolites. Studies exploring metabolome-wide changes are lacking, and the effects of natural environmental variation and herbivory on the metabolomes of plants growing in situ remain unknown. An untargeted metabolomic approach using ultra-high-performance liquid chromatography-mass spectrometry, coupled with variation partitioning, general linear mixed modeling, and network analysis was used to detect differences in metabolic phenotypes of Plantago major in fifteen natural populations across Denmark. Geographic region, distance, habitat type, phenological stage, soil parameters, light levels, and leaf area were investigated for their relative contributions to explaining differences in foliar metabolomes. Herbivory effects were further investigated by comparing metabolomes from damaged and undamaged leaves from each plant. Geographic region explained the greatest number of significant metabolic differences. Soil pH had the second largest effect, followed by habitat and leaf area, while phenological stage had no effect. No evidence of the induction of metabolic features was found between leaves damaged by herbivores compared to undamaged leaves on the same plant. Differences in metabolic phenotypes explained by geographic factors are attributed to genotypic variation and/or unmeasured environmental factors that differ at the regional level in Denmark. A small number of specialized features in the metabolome may be involved in facilitating the success of a widespread species such as Plantago major into such wide range of environmental conditions, although overall resilience in the metabolome was found in response to environmental parameters tested. Untargeted metabolomic approaches have great potential to improve our understanding of how specialized plant metabolites respond to environmental change and assist in adaptation to local conditions.
RESUMO
Diabetes mellitus is a significant worldwide health problem, with the incidence of type 2 diabetes increasing at alarming rates. Insulin resistance and dysregulated blood glucose control are established risk factors for microvascular complications and cardiovascular disease. Despite the recognition of diabetes as a major health issue and the availability of a growing number of medications designed to counteract its detrimental effects, real and perceived barriers remain that prevent patients from achieving optimal blood glucose control. The development and utilization of inhaled insulin as a novel insulin delivery system may positively influence patient treatment adherence and optimal glycemic control, potentially leading to a reduction in cardiovascular complications in patients with diabetes.
Assuntos
Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Administração por Inalação , Doenças Cardiovasculares/fisiopatologia , Contraindicações , Diabetes Mellitus/fisiopatologia , Sistemas de Liberação de Medicamentos , Hemoglobinas Glicadas/análise , Humanos , Educação de Pacientes como Assunto , Satisfação do Paciente , Período Pós-PrandialRESUMO
LIM domain only 4 (LMO4), a member of the LIM-only family of transcriptional coregulatory proteins, consists of two LIM protein-protein interaction domains that enable it to function as a linker protein in multiprotein complexes. Here, we have identified estrogen receptor alpha (ERalpha) and its corepressor, metastasis tumor antigen 1 (MTA1), as two novel binding partners of LMO4. Interestingly, LMO4 exhibited binding with both ERalpha and MTA1 and existed as a complex with ERalpha, MTA1, and histone deacetylases (HDAC), implying that LMO4 was a component of the MTA1 corepressor complex. Consistent with this notion, LMO4 overexpression repressed ERalpha transactivation functions in an HDAC-dependent manner. Accordingly, silencing of endogenous LMO4 expression resulted in a significant increased recruitment of ERalpha to target gene chromatin, stimulation of ERalpha transactivation activity, and enhanced expression of ERalpha-regulated genes. These findings suggested that LMO4 was an integral part of the molecular machinery involved in the negative regulation of ERalpha transactivation function in breast cells. Because LMO4 is up-regulated in human breast cancers, repression of ERalpha transactivation functions by LMO4 might contribute to the process of breast cancer progression by allowing the development of ERalpha-negative phenotypes, leading to increased aggressiveness of breast cancer cells.
Assuntos
Receptor alfa de Estrogênio/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Proteínas com Domínio LIM , Proteínas Repressoras/metabolismo , Transativadores , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genéticaRESUMO
Considerable inter- and intraspecific variation with respect to the quantity and composition of plant natural products exists. The processes that drive this variation remain largely unknown. Understanding which factors determine chemical diversity has the potential to shed light on plant defenses against herbivores and diseases and accelerate drug discovery. For centuries, Cinchona alkaloids were the primary treatment of malaria. Using Cinchona calisaya as a model, we generated genetic profiles of leaf samples from four plastid (trnL-F, matK, rps16, and ndhF) and one nuclear (ITS) DNA regions from twenty-two C. calisaya stands sampled in the Yungas region of Bolivia. Climatic and soil parameters were characterized and bark samples were analyzed for content of the four major alkaloids using HPLC-UV to explore the utility of evolutionary history (phylogeny) in determining variation within species of these compounds under natural conditions. A significant phylogenetic signal was found for the content of two out of four major Cinchona alkaloids (quinine and cinchonidine) and their total content. Climatic parameters, primarily driven by changing altitude, predicted 20.2% of the overall alkaloid variation, and geographical separation accounted for a further 9.7%. A clade of high alkaloid producing trees was identified that spanned a narrow range of altitudes, from 1,100 to 1,350 m. However, climate expressed by altitude was not a significant driver when accounting for phylogeny, suggesting that the chemical diversity is primarily driven by phylogeny. Comparisons of the relative effects of both environmental and genetic variability in determining plant chemical diversity have scarcely been performed at the genotypic level. In this study we demonstrate there is an essential need to do so if the extensive genotypic variation in plant biochemistry is to be fully understood.