RESUMO
During mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome. Shugoshin and the deacetylase Hst2 facilitated spreading the condensation signal to the chromosome arms. Targeting Aurora B to DNA circles or centromere-ablated chromosomes or releasing Shugoshin from PP2A-dependent inhibition bypassed the centromere requirement for condensation and enhanced the mitotic stability of DNA circles. Our data indicate that yeast cells license the chromosome-autonomous condensation of their chromatin in a centromere-dependent manner, excluding from this process non-centromeric DNA and thereby inhibiting their propagation.
Assuntos
Centrômero/genética , Cromossomos Fúngicos/genética , Mitose , Saccharomyces cerevisiae/genética , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismoRESUMO
Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.
Assuntos
Senescência Celular , Longevidade , Longevidade/genética , Polimerização , AminoácidosRESUMO
To fulfill their actual cellular role, individual microtubules become functionally specialized through a broad range of mechanisms. The 'search and capture' model posits that microtubule dynamics and functions are specified by cellular targets that they capture (i.e., a posteriori), independently of the microtubule-organizing center (MTOC) they emerge from. However, work in budding yeast indicates that MTOCs may impart a functional identity to the microtubules they nucleate, a priori. Key effectors in this process are microtubule plus-end tracking proteins (+TIPs), which track microtubule tips to regulate their dynamics and facilitate their targeted interactions. In this review, we discuss potential mechanisms of a priori microtubule specialization, focusing on recent findings indicating that +TIP networks may undergo liquid biomolecular condensation in different cell types.
Assuntos
Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismoRESUMO
Cellular behavior is frequently influenced by the cell's history, indicating that single cells may memorize past events. We report that budding yeast permanently escape pheromone-induced cell-cycle arrest when experiencing a deceptive mating attempt, i.e., not reaching their putative partner within reasonable time. This acquired behavior depends on super-assembly and inactivation of the G1/S inhibitor Whi3, which liberates the G1 cyclin Cln3 from translational inhibition. Super-assembly of Whi3 is a slow response to pheromone, driven by polyQ and polyN domains, counteracted by Hsp70, and stable over generations. Unlike prion aggregates, Whi3 super-assemblies are not inherited mitotically but segregate to the mother cell. We propose that such polyQ- and polyN-based elements, termed here mnemons, act as cellular memory devices to encode previous environmental conditions.
Assuntos
Feromônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Adaptação Biológica , Adenosina Trifosfatases/metabolismo , Ciclo Celular , Ciclinas/química , Ciclinas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Receptores de Fator de Acasalamento/metabolismo , Proteínas de Saccharomyces cerevisiae/químicaRESUMO
Chakravarty et al. (2019) and Itakura et al. (2019) report that the yeast RNA-binding protein Vts1 can convert into the [SMAUG+] prion state and delay meiosis commitment in response to starvation. It enables budding yeast to optimize their sporulation efficiency depending on how quickly nutrient availability fluctuates in their environment.
Assuntos
Príons , Proteínas de Saccharomyces cerevisiae/genética , Meiose , Saccharomyces cerevisiae , Esporos FúngicosRESUMO
Bacteria lack many of the features that eukaryotic cells use to compartmentalize cytoplasm and membranes. In this issue, Schlimpert et al. describe a new mechanism of spatial confinment in the bacterium Caulobacter crescentus that prevents the exchange of soluble and membrane proteins between the stalk and cell body.
RESUMO
Like many asymmetrically dividing cells, budding yeast segregates mitotic spindle poles nonrandomly between mother and daughter cells. During metaphase, the spindle positioning protein Kar9 accumulates asymmetrically, localizing specifically to astral microtubules emanating from the old spindle pole body (SPB) and driving its segregation to the bud. Here, we show that the SPB component Nud1/centriolin acts through the mitotic exit network (MEN) to specify asymmetric SPB inheritance. In the absence of MEN signaling, Kar9 asymmetry is unstable and its preference for the old SPB is disrupted. Consistent with this, phosphorylation of Kar9 by the MEN kinases Dbf2 and Dbf20 is not required to break Kar9 symmetry but is instead required to maintain stable association of Kar9 with the old SPB throughout metaphase. We propose that MEN signaling links Kar9 regulation to SPB identity through biasing and stabilizing the age-insensitive, cyclin-B-dependent mechanism of symmetry breaking.
Assuntos
Saccharomyces cerevisiae/citologia , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Desoxirribonucleases/metabolismo , Metáfase , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , tRNA Metiltransferases/metabolismoRESUMO
Mitotic entry correlates with the condensation of the chromosomes, changes in histone modifications, exclusion of transcription factors from DNA, and the broad downregulation of transcription. However, whether mitotic condensation influences transcription in the subsequent interphase is unknown. Here, we show that preventing one chromosome to condense during mitosis causes it to fail resetting of transcription. Rather, in the following interphase, the affected chromosome contains unusually high levels of the transcription machinery, resulting in abnormally high expression levels of genes in cis, including various transcription factors. This subsequently causes the activation of inducible transcriptional programs in trans, such as the GAL genes, even in the absence of the relevant stimuli. Thus, mitotic chromosome condensation exerts stringent control on interphase gene expression to ensure the maintenance of basic cellular functions and cell identity across cell divisions. Together, our study identifies the maintenance of transcriptional homeostasis during interphase as an unexpected function of mitosis and mitotic chromosome condensation.
Assuntos
Cromatina , Cromossomos , Cromatina/genética , Cromossomos/genética , Cromossomos/metabolismo , Interfase/genética , Mitose/genética , Fatores de Transcrição/metabolismoRESUMO
The genetic code is degenerate. Each amino acid is encoded by up to six synonymous codons; the choice between these codons influences gene expression. Here, we show that in coding sequences, once a particular codon has been used, subsequent occurrences of the same amino acid do not use codons randomly, but favor codons that use the same tRNA. The effect is pronounced in rapidly induced genes, involves both frequent and rare codons and diminishes only slowly as a function of the distance between subsequent synonymous codons. Furthermore, we found that in S. cerevisiae codon correlation accelerates translation relative to the translation of synonymous yet anticorrelated sequences. The data suggest that tRNA diffusion away from the ribosome is slower than translation, and that some tRNA channeling takes place at the ribosome. They also establish that the dynamics of translation leave a significant signature at the level of the genome.
Assuntos
Códon/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismoRESUMO
Cells need to rewire their metabolic network depending on the available carbon source. Simpson-Lavy et al. (2017) have discovered that Std1, the activator of the yeast AMP kinase Snf1, condensates into granules to tune Snf1 activity.
Assuntos
Proteínas Serina-Treonina Quinases , Açúcares , Glucose , Peptídeos e Proteínas de Sinalização Intracelular , Fosforilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiaeRESUMO
LAG1 was the first longevity assurance gene discovered in Saccharomyces cerevisiae The Lag1 protein is a ceramide synthase and its homolog, Lac1, has a similar enzymatic function but no role in aging. Lag1 and Lac1 lie in an enzymatic branch point of the sphingolipid pathway that is interconnected by the activity of the C4 hydroxylase, Sur2. By uncoupling the enzymatic branch point and using lipidomic mass spectrometry, metabolic labeling and in vitro assays we show that Lag1 preferentially synthesizes phyto-sphingolipids. Using photo-bleaching experiments we show that Lag1 is uniquely required for the establishment of a lateral diffusion barrier in the nuclear envelope, which depends on phytoceramide. Given the role of this diffusion barrier in the retention of aging factors in the mother cell, we suggest that the different specificities of the two ceramide synthases, and the specific effect of Lag1 on asymmetrical inheritance, may explain why Δlag1 cells have an increased lifespan while Δlac1 cells do not.
Assuntos
Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/genética , Oxirredutases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ceramidas/metabolismo , Lipoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Esfingolipídeos/metabolismoRESUMO
Phase separated macromolecules play essential roles in many biological and synthetic systems. Physical characterization of these systems can be challenging because of limited sample volumes, particularly for phase-separated proteins. Here, we demonstrate that a classic method for measuring the surface tension of liquid droplets, based on the analysis of the shape of a sessile droplet, can be effectively scaled down to measure the interfacial tension between a macromolecule-rich droplet phase and its co-existing macromolecule-poor continuous phase. The connection between droplet shape and surface tension relies on the density difference between the droplet and its surroundings. This can be determined with small sample volumes in the same setup by measuring the droplet sedimentation velocity. An interactive MATLAB script for extracting the capillary length from a droplet image is included in the ESI.
Assuntos
Polímeros , Tensão SuperficialRESUMO
Septins comprise a conserved family of proteins that are found primarily in fungi and animals. These GTP-binding proteins have several roles during cell division, cytoskeletal organization and membrane-remodelling events. One factor that is crucial for their functions is the ordered assembly of individual septins into oligomeric core complexes that, in turn, form higher-order structures such as filaments, rings and gauzes. The molecular details of these interactions and the mechanism by which septin-complex assembly is regulated have remained elusive. Recently, the first detailed structural views of the septin core have emerged, and these, along with studies of septin dynamics in vivo, have provided new insight into septin-complex assembly and septin function in vivo.
Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/fisiologia , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Proteínas do Citoesqueleto/genética , GTP Fosfo-Hidrolases/genética , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia , TermodinâmicaRESUMO
Asymmetric cell division generates cell diversity and contributes to cellular aging and rejuvenation. Here, we review the molecular mechanisms enabling budding yeast to recognize spindle pole bodies (SPB, centrosome equivalent) based on their age, and guide their non-random mitotic segregation: SPB inheritance requires the distinction of old from new SPBs and is regulated by the SPB-inheritance network (SPIN) and the mitotic exit network (MEN). The SPIN marks the pre-existing SPB as old and the MEN recognizes these marks translating them into spindle orientation. We next revisit other molecules and structures that partition depending on their age rather than their abundance at mitosis as, for example, DNA, centrosomes, mitochondria, and histones in yeast and other systems. The recurrence of this differential behavior suggests a functional significance for numerous cell types, which we then discuss. We conclude that non-random segregation may facilitate asymmetric cell fate determination and thereby indirectly aging and rejuvenation. Also see the video abstract here: https://youtu.be/1sQ4rAomnWY.
Assuntos
Divisão Celular Assimétrica , Saccharomycetales/citologia , Corpos Polares do Fuso/fisiologia , Animais , Centrossomo/metabolismo , Histonas/genética , Histonas/metabolismo , Mitocôndrias/metabolismo , MitoseRESUMO
Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells.
Assuntos
DNA/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Divisão Celular , Centrossomo/metabolismo , Proteínas do Citoesqueleto/genética , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Mitose , Proteínas Nucleares/genética , Plasmídeos , TransfecçãoRESUMO
The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is crucial to control Kar9 distribution and spindle positioning during mitosis.
Assuntos
Citocinese/genética , Mitose/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Saccharomyces cerevisiae/genética , Polos do Fuso/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular/genética , Proteínas do Citoesqueleto/genética , GTP Fosfo-Hidrolases/genética , Regulação Fúngica da Expressão Gênica , Glutamina/genética , Glutamina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Coalescence of proteins into different types of intracellular bodies has surfaced as a widespread adaptive mechanism to re-organize cells and cellular functions in response to specific cues. These structures, composed of proteins or protein-mRNA-complexes, regulate cellular processes through modulating enzymatic activities, gene expression or shielding macromolecules from damage. Accordingly, such bodies are associated with a wide-range of processes, including meiosis, memory-encoding, host-pathogen interactions, cancer, stress responses, as well as protein quality control, DNA replication stress and aneuploidy. Importantly, these distinct coalescence responses are controlled, and in many cases regulated by chaperone proteins. While cells can tolerate and proficiently coordinate numerous distinct types of protein bodies, some of them are also intimately linked to diseases or the adverse effects of aging. Several protein bodies that differ in composition, packing, dynamics, size, and localization were originally discovered in budding yeast. Here, we provide a concise and comparative review of their nature and nomenclature.
Assuntos
Adaptação Fisiológica , Agregados Proteicos , Proteínas/metabolismo , Envelhecimento/metabolismo , Grânulos Citoplasmáticos , Expressão Gênica , Humanos , Príons/química , Príons/metabolismo , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Leveduras/genética , Leveduras/metabolismoRESUMO
While the original septin mutants were identified more than 30 years ago for their role in cytokinesis [Hartwell, LH: Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 1971, 69: 265-276], the architecture of septin complexes and higher order structures has remained a mystery up until very recently. Over the last few months a number of converging approaches have suddenly provided a wealth of structural information about the different levels of septin organization. Here, we review these advancements and highlight their functional consequences.
Assuntos
Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Humanos , Modelos Moleculares , Monoéster Fosfórico Hidrolases/ultraestrutura , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismoRESUMO
The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling.
Assuntos
Citocinese , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Septinas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese/genética , Regulação Fúngica da Expressão Gênica , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Septinas/genética , Septinas/metabolismo , Transdução de SinaisRESUMO
Ageing and the mortality that ensues are sustainable for the species only if age is reset in newborns. In budding yeast, buds are made young whereas ageing factors, such as carbonylated proteins and DNA circles, remain confined to the ageing mother cell. The mechanisms of this confinement and their relevance are poorly understood. Here we show that a septin-dependent, lateral diffusion barrier forms in the nuclear envelope and limits the translocation of pre-existing nuclear pores into the bud. The retention of DNA circles within the mother cell depends on the presence of the diffusion barrier and on the anchorage of the circles to pores mediated by the nuclear basket. In accordance with the diffusion barrier ensuring the asymmetric segregation of nuclear age-determinants, the barrier mutant bud6Delta fails to properly reset age in buds. Our data involve septin-dependent diffusion barriers in the confinement of ageing factors to one daughter cell during asymmetric cell division.