RESUMO
The identification and characterization of antigen-specific T cells during health and disease remains a key to improving our understanding of immune pathophysiology. The technical challenges of tracking antigen-specific T cell populations within the endogenous T cell repertoire have been greatly advanced by the development of peptide:MHC tetramer reagents. These fluorescently labeled soluble multimers of MHC class I or class II molecules complexed to antigenic peptide epitopes bind directly to T cells with corresponding T cell receptor (TCR) specificity and can, therefore, identify antigen-specific T cell populations in their native state without a requirement for a functional response induced by ex vivo stimulation. For exceedingly rare populations, tetramer-bound T cells can be magnetically enriched to increase the sensitivity and reliability of detection. As the investigation of tissue-resident T cell immunity deepens, there is a pressing need to identify antigen-specific T cells that traffic to and reside in nonlymphoid tissues. In this protocol, we present a detailed set of instructions for the isolation and characterization of antigen-specific T cells present within mouse lungs. This involves the isolation of T cells from digested lung tissue followed by a general T cell magnetic enrichment step and tetramer staining for flow cytometry analysis and sorting. The steps highlighted in this protocol utilize common techniques and readily available reagents, making it accessible for nearly any researcher engaged in mouse T cell immunology, and are highly adaptable for a variety of downstream analyses of any low frequency antigen-specific T cell population residing within the lungs.
Assuntos
Pulmão , Animais , Camundongos , Pulmão/imunologia , Pulmão/citologia , Peptídeos/imunologia , Peptídeos/química , Linfócitos T/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Epitopos de Linfócito T/imunologiaRESUMO
Understanding adaptive immunity against SARS-CoV-2 is a major requisite for the development of effective vaccines and treatments for COVID-19. CD4+ T cells play an integral role in this process primarily by generating antiviral cytokines and providing help to antibody-producing B cells. To empower detailed studies of SARS-CoV-2-specific CD4+ T cell responses in mouse models, we comprehensively mapped I-Ab-restricted epitopes for the spike and nucleocapsid proteins of the BA.1 variant of concern via IFNγ ELISpot assay. This was followed by the generation of corresponding peptide:MHCII tetramer reagents to directly stain epitope-specific T cells. Using this rigorous validation strategy, we identified 6 immunogenic epitopes in spike and 3 in nucleocapsid, all of which are conserved in the ancestral Wuhan strain. We also validated a previously identified epitope from Wuhan that is absent in BA.1. These epitopes and tetramers will be invaluable tools for SARS-CoV-2 antigen-specific CD4+ T cell studies in mice.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Nucleocapsídeo/química , Peptídeos/química , SARS-CoV-2/química , Antígenos de Histocompatibilidade Classe II/química , Glicoproteína da Espícula de Coronavírus/químicaRESUMO
Tissue-resident CD8+ T cells (TRM) continuously scan peptide-MHC (pMHC) complexes in their organ of residence to intercept microbial invaders. Recent data showed that TRM lodged in exocrine glands scan tissue in the absence of any chemoattractant or adhesion receptor signaling, thus bypassing the requirement for canonical migration-promoting factors. The signals eliciting this noncanonical motility and its relevance for organ surveillance have remained unknown. Using mouse models of viral infections, we report that exocrine gland TRM autonomously generated front-to-back F-actin flow for locomotion, accompanied by high cortical actomyosin contractility, and leading-edge bleb formation. The distinctive mode of exocrine gland TRM locomotion was triggered by sensing physical confinement and was closely correlated with nuclear deformation, which acts as a mechanosensor via an arachidonic acid and Ca2+ signaling pathway. By contrast, naïve CD8+ T cells or TRM surveilling microbe-exposed epithelial barriers did not show mechanosensing capacity. Inhibition of nuclear mechanosensing disrupted exocrine gland TRM scanning and impaired their ability to intercept target cells. These findings indicate that confinement is sufficient to elicit autonomous T cell surveillance in glands with restricted chemokine expression and constitutes a scanning strategy that complements chemosensing-dependent migration.
Assuntos
Linfócitos T CD8-Positivos , Viroses , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Memória Imunológica , Glândulas Exócrinas , Transdução de SinaisRESUMO
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens.
Assuntos
Linfócitos T CD8-Positivos , Proteínas de Ligação ao GTP , Listeria monocytogenes , Animais , Camundongos , Proteínas de Ligação ao GTP/metabolismo , Subunidades Proteicas/metabolismo , Subpopulações de Linfócitos TRESUMO
The gastrointestinal (GI) tract constitutes an essential barrier against ingested microbes, including potential pathogens. Although immune reactions are well studied in the lower GI tract, it remains unclear how adaptive immune responses are initiated during microbial challenge of the oral mucosa (OM), the primary site of microbial encounter in the upper GI tract. Here, we identify mandibular lymph nodes (mandLNs) as sentinel lymphoid organs that intercept ingested Listeria monocytogenes (Lm). Oral Lm uptake led to local activation and release of antigen-specific CD8+ T cells that constituted most of the early circulating effector T cell (TEFF) pool. MandLN-primed TEFF disseminated to lymphoid organs, lung, and OM and contributed substantially to rapid elimination of target cells. In contrast to CD8+ TEFF generated in mesenteric LN (MLN) during intragastric infection, mandLN-primed TEFF lacked a gut-seeking phenotype, which correlated with low expression of enzymes required for gut-homing imprinting by mandLN stromal and dendritic cells. Accordingly, mandLN-primed TEFF decreased Lm burden in spleen but not MLN after intestinal infection. Our findings extend the concept of regional specialization of immune responses along the length of the GI tract, with CD8+ TEFF generated in the upper GI tract displaying homing profiles that differ from those imprinted by lymphoid tissue of the lower GI tract.
Assuntos
Linfócitos T CD8-Positivos , Mucosa Bucal , Linfonodos , Fenótipo , Linfócitos T CitotóxicosRESUMO
Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing-remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed.
Assuntos
Imunidade Celular , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Doença Crônica , Interações Hospedeiro-Patógeno , Humanos , Memória Imunológica , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ativação Linfocitária , Fenótipo , Recidiva , Transdução de Sinais , Linfócitos T Reguladores/metabolismoRESUMO
Understanding the fate of dendritic cells (DCs) after productive immune synapses (postsynaptic DCs) with T cells during antigen presentation has been largely neglected in favor of deciphering the nuances of T cell activation and memory generation. Here, we describe that postsynaptic DCs switch their transcriptomic signature, correlating with epigenomic changes including DNA accessibility and histone methylation. We focus on the chemokine receptor Ccr7 as a proof-of-concept gene that is increased in postsynaptic DCs. Consistent with our epigenomic observations, postsynaptic DCs migrate more efficiently toward CCL19 in vitro and display enhanced homing to draining lymph nodes in vivo. This work describes a previously unknown DC population whose transcriptomics, epigenomics, and migratory capacity change in response to their cognate contact with T cells.
Assuntos
Epigenômica , Transcriptoma , Movimento Celular , Células Dendríticas , Linfonodos , Receptores CCR7 , SinapsesRESUMO
T cell activation in lymphoid tissue occurs through interactions with cognate peptide-major histocompatibility complex (pMHC)-presenting dendritic cells (DCs). Intravital imaging studies using ex vivo peptide-pulsed DCs have uncovered that cognate pMHC levels imprint a wide range of dynamic contacts between these two cell types. T cell-DC interactions vary between transient, "kinapse-like" contacts at low to moderate pMHC levels to immediate "synapse-like" arrest at DCs displaying high pMHC levels. To date, it remains unclear whether this pattern is recapitulated when the immune system faces a replicative agent, such as a virus, at low and high inoculum. Here, we locally administered low and high inoculum of lymphocytic choriomeningitis virus (LCMV) in mice to follow activation parameters of Ag-specific CD4+ and CD8+ T cells in draining lymph nodes (LNs) during the first 72 h post infection. We correlated these data with kinapse- and synapse-like motility patterns of Ag-specific T cells obtained by intravital imaging of draining LNs. Our data show that initial viral inoculum controls immediate synapse-like T cell arrest vs. continuous kinapse-like motility. This remains the case when the viral inoculum and thus the inflammatory microenvironment in draining LNs remains identical but cognate pMHC levels vary. Our data imply that the Ag-processing capacity of draining LNs is equipped to rapidly present high levels of cognate pMHC when antigenic material is abundant. Our findings further suggest that widespread T cell arrest during the first 72 h of an antimicrobial immune responses is not required to trigger proliferation. In sum, T cells adapt their scanning behavior according to available antigen levels during viral infections, with dynamic changes in motility occurring before detectable expression of early activation markers.
Assuntos
Movimento Celular/imunologia , Sinapses Imunológicas/imunologia , Linfonodos/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Viroses/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ativação Linfocitária/genética , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Subpopulações de Linfócitos T/metabolismo , Viroses/metabolismo , Viroses/virologiaRESUMO
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Assuntos
Doença de Chagas/parasitologia , Doença de Chagas/transmissão , Interações Hospedeiro-Parasita , Trypanosoma cruzi/fisiologia , Animais , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade , Camundongos , Especificidade de Órgãos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Oral transmission of Trypanosoma cruzi, the causative agent of Chagas disease, is the most important route of infection in Brazilian Amazon and Venezuela. Other South American countries have also reported outbreaks associated with food consumption. A recent study showed the importance of parasite contact with oral cavity to induce a highly severe acute disease in mice. However, it remains uncertain the primary site of parasite entry and multiplication due to an oral infection. Here, we evaluated the presence of T. cruzi Dm28c luciferase (Dm28c-luc) parasites in orally infected mice, by bioluminescence and quantitative real-time PCR. In vivo bioluminescent images indicated the nasomaxillary region as the site of parasite invasion in the host, becoming consistently infected throughout the acute phase. At later moments, 7 and 21 days post-infection (dpi), luminescent signal is denser in the thorax, abdomen and genital region, because of parasite dissemination in different tissues. Ex vivo analysis demonstrated that the nasomaxillary region, heart, mandibular lymph nodes, liver, spleen, brain, epididymal fat associated to male sex organs, salivary glands, cheek muscle, mesenteric fat and lymph nodes, stomach, esophagus, small and large intestine are target tissues at latter moments of infection. In the same line, amastigote nests of Dm28c GFP T. cruzi were detected in the nasal cavity of 6 dpi mice. Parasite quantification by real-time qPCR at 7 and 21 dpi showed predominant T. cruzi detection and expansion in mouse nasal cavity. Moreover, T. cruzi DNA was also observed in the mandibular lymph nodes, pituitary gland, heart, liver, small intestine and spleen at 7 dpi, and further, disseminated to other tissues, such as the brain, stomach, esophagus and large intestine at 21 dpi. Our results clearly demonstrated that oral cavity and adjacent compartments is the main target region in oral T. cruzi infection leading to parasite multiplication at the nasal cavity.
Assuntos
Estruturas Animais/parasitologia , Doença de Chagas/transmissão , Boca/parasitologia , Parasitemia/diagnóstico , Trypanosoma cruzi/isolamento & purificação , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Medições Luminescentes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Células VeroRESUMO
Oral transmission of Chagas disease has been documented in Latin American countries. Nevertheless, significant studies on the pathophysiology of this form of infection are largely lacking. The few studies investigating oral route infection disregard that inoculation in the oral cavity (Oral infection, OI) or by gavage (Gastrointestinal infection, GI) represent different infection routes, yet both show clear-cut parasitemia and heart parasitism during the acute infection. Herein, BALB/c mice were subjected to acute OI or GI infection using 5x10(4) culture-derived Trypanosoma cruzi trypomastigotes. OI mice displayed higher parasitemia and mortality rates than their GI counterparts. Heart histopathology showed larger areas of infiltration in the GI mice, whereas liver lesions were more severe in the OI animals, accompanied by higher Alanine Transaminase and Aspartate Transaminase serum contents. A differential cytokine pattern was also observed because OI mice presented higher pro-inflammatory cytokine (IFN-γ, TNF) serum levels than GI animals. Real-time PCR confirmed a higher TNF, IFN-γ, as well as IL-10 expression in the cardiac tissue from the OI group compared with GI. Conversely, TGF-ß and IL-17 serum levels were greater in the GI animals. Immunolabeling revealed macrophages as the main tissue source of TNF in infected mice. The high mortality rate observed in the OI mice paralleled the TNF serum rise, with its inhibition by an anti-TNF treatment. Moreover, differences in susceptibility between GI versus OI mice were more clearly related to the host response than to the effect of gastric pH on parasites, since infection in magnesium hydroxide-treated mice showed similar results. Overall, the present study provides conclusive evidence that the initial site of parasite entrance critically affects host immune response and disease outcome. In light of the occurrence of oral Chagas disease outbreaks, our results raise important implications in terms of the current view of the natural disease course and host-parasite relationship.
Assuntos
Doença de Chagas/transmissão , Citocinas/metabolismo , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/mortalidade , Citocinas/sangue , Citocinas/genética , Regulação da Expressão Gênica/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Parasitemia/imunologia , Parasitemia/mortalidade , Parasitemia/transmissão , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidadeRESUMO
Acute Chagas disease is characterized by a systemic infection that leads to the strong activation of the adaptive immune response. Outbreaks of oral contamination by the infective protozoan Trypanosoma cruzi are frequent in Brazil and other Latin American countries, and an increased severity of clinical manifestations and mortality is observed in infected patients. These findings have elicited questions about the specific responses triggered after T. cruzi entry via mucosal sites, possibly modulating local immune mechanisms, and further impacting regional and systemic immunity. Here, we provide evidence for the existence of differential lymphoid organ responses in experimental models of acute T. cruzi infection.
RESUMO
The comprehension of the immune responses in infectious diseases is crucial for developing novel therapeutic strategies. Here, we review current findings on the dynamics of lymphocyte subpopulations following experimental acute infection by Trypanosoma cruzi, the causative agent of Chagas disease. In the thymus, although the negative selection process of the T-cell repertoire remains operational, there is a massive thymocyte depletion and abnormal release of immature CD4(+)CD8(+) cells to peripheral lymphoid organs, where they acquire an activated phenotype similar to activated effector or memory T cells. These cells apparently bypassed the negative selection process, and some of them are potentially autoimmune. In infected animals, an atrophy of mesenteric lymph nodes is also observed, in contrast with the lymphocyte expansion in spleen and subcutaneous lymph nodes, illustrating a complex and organ specific dynamics of lymphocyte subpopulations. Accordingly, T- and B-cell activation is seen in subcutaneous lymph nodes and spleen, but not in mesenteric lymph nodes. Lastly, although the function of peripheral CD4(+)CD8(+) T-cell population remains to be defined in vivo, their presence may contribute to the immunopathological events found in both murine and human Chagas disease.