Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem J ; 448(1): 1-11, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22909319

RESUMO

During the initiation stage of eukaryotic mRNA translation, the eIF4G (eukaryotic initiation factor 4G) proteins act as an aggregation point for recruiting the small ribosomal subunit to an mRNA. We previously used RNAi (RNA interference) to reduce expression of endogenous eIF4GI proteins, resulting in reduced protein synthesis rates and alterations in the morphology of cells. Expression of EIF4G1 cDNAs, encoding different isoforms (f-a) which arise through selection of alternative initiation codons, rescued translation to different extents. Furthermore, overexpression of the eIF4GII paralogue in the eIF4GI-knockdown background was unable to restore translation to the same extent as eIF4GIf/e isoforms, suggesting that translation events governed by this protein are different. In the present study we show that multiple isoforms of eIF4GII exist in mammalian cells, arising from multiple promoters and alternative splicing events, and have identified a non-canonical CUG initiation codon which extends the eIF4GII N-terminus. We further show that the rescue of translation in eIF4GI/eIF4GII double-knockdown cells by our novel isoforms of eIF4GII is as robust as that observed with either eIF4GIf or eIF4GIe, and more than that observed with the original eIF4GII. As the novel eIF4GII sequence diverges from eIF4GI, these data suggest that the eIF4GII N-terminus plays an alternative role in initiation factor assembly.


Assuntos
Códon de Iniciação/genética , Fator de Iniciação Eucariótico 4G/genética , Regiões Promotoras Genéticas/genética , Sítios de Splice de RNA/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , DNA Complementar/genética , Fator de Iniciação Eucariótico 4G/biossíntese , Éxons/genética , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fases de Leitura Aberta , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
2.
Cell Cycle ; 10(3): 538-48, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21252625

RESUMO

In this study we report that the protein kinase CK2 phosphorylates survivin specifically on threonine 48 (T48) within its BIR domain, and that T48 is critical to both the mitotic and anti-apoptotic roles of survivin. Interestingly, during mitosis T48 mutants localise normally, but are unable to support cell growth when endogenous survivin is removed by siRNA. In addition, while overexpression of survivin normally confers inhibition of TRAIL-mediated apoptosis, this protection is abolished by mutation of T48. Furthermore in interphase cells depletion of endogenous survivin causes redistribution of T48 mutants from the cytoplasm to the nucleus and treatment of cells expressing survivin-GFP with the CK2 inhibitor TBB phenocopies this nuclear redistribution. Finally, we show T48 mutants have increased affinity for borealin, and that this association and cell proliferation can be restored by introduction of a second mutation at T97. To our knowledge these data are the first to identify T48 as a key regulatory site on survivin, and CK2 as a mediator of its mitotic and anti-apoptotic functions.


Assuntos
Apoptose , Caseína Quinase II/fisiologia , Proteínas Inibidoras de Apoptose/fisiologia , Mitose , Motivos de Aminoácidos , Sequência de Aminoácidos , Caseína Quinase II/metabolismo , Proliferação de Células , Proteínas de Fluorescência Verde/análise , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/análise , Proteínas Inibidoras de Apoptose/química , Mutação , Fosforilação , Interferência de RNA , Proteínas Recombinantes de Fusão/análise , Alinhamento de Sequência , Análise de Sequência de Proteína , Survivina , Ligante Indutor de Apoptose Relacionado a TNF , Treonina/química
3.
Cell Cycle ; 8(2): 278-83, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19158485

RESUMO

Survivin is an essential chromosomal passenger protein required for mitotic progression. It is also an inhibitor of apoptosis and can prevent caspase-mediated cell death. In addition, survivin levels are elevated in cancer cells where its presence correlates with increased resistance to chemo- and radio-therapy, which makes it an attractive target for novel anti-cancer strategies. Interestingly, survivin is phosphorylated by the mitotic kinase, cdk1, and a nonphosphorylatable form, survivin(T34A), cannot inhibit apoptosis. Here we rigorously test the ability of survivin(T34A) and its corresponding phosphomimetic, survivin(T34E), to promote cell viability through survivin's dual roles. The effects of these mutations are diametrically opposed: survivin(T34A) accelerates cell proliferation and promotes apoptosis, whereas survivin(T34E) retards growth and promotes survival. Thus the phosphorylation status of survivin at T34 is pivotal to a cell's decision to live or die.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Treonina/metabolismo , Proteína Quinase CDC2/metabolismo , Morte Celular , Proliferação de Células , Citoproteção , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/química , Mutação , Fosforilação , Treonina/genética
4.
Cell Cycle ; 6(10): 1220-30, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17457057

RESUMO

Survivin operates in a complex with aurora B kinase and is phosphorylated by it on threonine 117 in vitro. Here we ask whether phosphorylation of survivin by aurora B kinase regulates its function during mitosis in vivo. Using a phospho-specific antibody we first establish that survivin is phosphorylated at T117 during mitosis and is present at the midbody during cytokinesis. Next we use two independent RNAi complementation approaches to investigate threonine 117 mutants in survivin depleted cells. Our data suggest that while non-phosphorylatable survivin, survivin(T117A), can substitute for the wild type protein, a phosphomimic, survivin(T117E) cannot restore viability, nor can it complement chromosome congression and spindle checkpoint defects that arise due to depletion of endogenous survivin. Fluorescence imaging and fluorescence recovery after photobleaching analysis suggest that the phosphomimic has reduced affinity for centromeres compared with the non-phosphorylatable form. We conclude that survivin is phosphorylated at T117 during mitosis, and once phosphorylated, dephosphorylation is crucial for chromosome congression and progression into anaphase.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Centrômero/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Immunoblotting , Proteínas Inibidoras de Apoptose , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Proteínas de Neoplasias/genética , Fosforilação , Interferência de RNA , Survivina
5.
J Biol Chem ; 281(44): 33450-6, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16950794

RESUMO

Survivin is a bifunctional protein that acts as a suppressor of apoptosis and has an essential role in mitosis. To date whether these two functions can be divorced has not been addressed. Here we show that the linker region between the BIR (baculovirus inhibitor of apoptosis repeat) domain of survivin and COOH-terminal alpha helix may be the key to separating its roles. When overexpressed survivin is present in interphase cells and shuttles between the cytoplasm and nucleus. Here we identify a rev-like nuclear exportation signal (NES) in the central domain of survivin and demonstrate that point mutations within this region cause accumulation of survivin in the nucleus. Interestingly cells expressing NES mutants exhibit reduced survival after X-irradiation. Moreover, cells expressing survivin(L98A)-green fluorescent protein (GFP) showed increased poly(ADP-ribose) polymerase-cleavage and caspase-3 activity after tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment compared with cells expressing full-length survivin-green fluorescent protein. These data suggest a direct link between the interphase localization of survivin and cellular responsiveness to apoptotic stimuli. Using a cell proliferation assay, we also found that ectopic expression of NES mutants can complement for depletion of endogenous survivin, indicating that they can execute the mitotic duties of survivin. Thus we demonstrate for the first time that 1) survivin has a functional NES; 2) nuclear accumulation of overexpressed survivin correlates with increased sensitivity of cells to ionising radiation; and 3) the anti-apoptotic and mitotic roles of survivin can be separated through mutation of its NES. Separating these two functions of survivin could open up new possibilities for therapeutic strategies aimed at eliminating cancer cells yet preserving normal cell viability.


Assuntos
Apoptose , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose , Proteínas Associadas aos Microtúbulos/genética , Mutação/genética , Proteínas de Neoplasias/genética , Sinais de Exportação Nuclear , Ligação Proteica , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA