Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834195

RESUMO

L-DOPA, the precursor of catecholamines, exerts a pro-locomotor action in several vertebrate species, including newborn rats. Here, we tested the hypothesis that decreasing the degradation of monoamines can promote the pro-locomotor action of a low, subthreshold dose of L-DOPA in five-day-old rats. The activity of the degrading pathways involving monoamine oxidases or catechol-O-methyltransferase was impaired by injecting nialamide or tolcapone, respectively. At this early post-natal stage, the capacity of the drugs to trigger locomotion was investigated by monitoring the air-stepping activity expressed by the animals suspended in a harness above the ground. We show that nialamide (100 mg/kg) or tolcapone (100 mg/kg), without effect on their own promotes maximal expression of air-stepping sequences in the presence of a sub-effective dose of L-DOPA (25 mg/kg). Tissue measurements of monoamines (dopamine, noradrenaline, serotonin and some of their metabolites) in the cervical and lumbar spinal cord confirmed the regional efficacy of each inhibitor toward their respective enzyme. Our experiments support the idea that the raise of monoamines boost L-DOPA's locomotor action. Considering that both inhibitors differently altered the spinal monoamines levels in response to L-DOPA, our data also suggest that maximal locomotor response can be reached with different monoamines environment.


Assuntos
Catecol O-Metiltransferase , Levodopa , Ratos , Animais , Levodopa/farmacologia , Levodopa/metabolismo , Tolcapona/farmacologia , Animais Recém-Nascidos , Nialamida , Locomoção
2.
J Physiol ; 599(19): 4477-4496, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34412148

RESUMO

KEY POINTS: Stimulation of hindlimb afferent fibres can both stabilize and increase the activity of fore- and hindlimb motoneurons during fictive locomotion. The increase in motoneuron activity is at least partially due to the production of doublets of action potentials in a subpopulation of motoneurons. These results were obtained using an in vitro brainstem/spinal cord preparation of neonatal rat. ABSTRACT: Quadrupedal locomotion relies on a dynamic coordination between central pattern generators (CPGs) located in the cervical and lumbar spinal cord, and controlling the fore- and hindlimbs, respectively. It is assumed that this CPG interaction is achieved through separate closed-loop processes involving propriospinal and sensory pathways. However, the functional consequences of a concomitant involvement of these different influences on the degree of coordination between the fore- and hindlimb CPGs is still largely unknown. Using an in vitro brainstem/spinal cord preparation of neonatal rat, we found that rhythmic, bilaterally alternating stimulation of hindlimb sensory input pathways elicited coordinated hindlimb and forelimb CPG activity. During pharmacologically induced fictive locomotion, lumbar dorsal root (DR) stimulation entrained and stabilized an ongoing cervico-lumbar locomotor-like rhythm and increased the amplitude of both lumbar and cervical ventral root bursting. The increase in cervical burst amplitudes was correlated with the occurrence of doublet action potential firing in a subpopulation of motoneurons, enabling the latter to transition between low and high frequency discharge according to the intensity of DR stimulation. Moreover, our data revealed that propriospinal and sensory pathways act synergistically to strengthen cervico-lumbar interactions. Indeed, split-bath experiments showed that fully coordinated cervico-lumbar fictive locomotion was induced by combining pharmacological stimulation of either the lumbar or cervical CPGs with lumbar DR stimulation. This study thus highlights the powerful interactions between sensory and propriospinal pathways which serve to ensure the coupling of the fore- and hindlimb CPGs for effective quadrupedal locomotion.


Assuntos
Locomoção , Neurônios Motores , Animais , Animais Recém-Nascidos , Membro Posterior , Ratos , Medula Espinal
3.
J Physiol ; 599(19): 4455-4476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34411301

RESUMO

KEY POINTS: In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT: The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.


Assuntos
5-Hidroxitriptofano , Levodopa , 5-Hidroxitriptofano/farmacologia , Animais , Animais Recém-Nascidos , Dopamina , Levodopa/farmacologia , Ratos , Serotonina
4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121267

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is acknowledged as a major neuromodulator of nervous systems in both invertebrates and vertebrates. It has been proposed for several decades that it impacts animal cognition and behavior. In spite of a completely distinct organization of the 5-HT systems across the animal kingdom, several lines of evidence suggest that the influences of 5-HT on behavior and cognition are evolutionary conserved. In this review, we have selected some behaviors classically evoked when addressing the roles of 5-HT on nervous system functions. In particular, we focus on the motor activity, arousal, sleep and circadian rhythm, feeding, social interactions and aggressiveness, anxiety, mood, learning and memory, or impulsive/compulsive dimension and behavioral flexibility. The roles of 5-HT, illustrated in both invertebrates and vertebrates, show that it is more able to potentiate or mitigate the neuronal responses necessary for the fine-tuning of most behaviors, rather than to trigger or halt a specific behavior. 5-HT is, therefore, the prototypical neuromodulator fundamentally involved in the adaptation of all organisms across the animal kingdom.


Assuntos
Comportamento Animal/fisiologia , Cognição/fisiologia , Serotonina/metabolismo , Animais , Ritmo Circadiano/fisiologia , Relações Interpessoais , Atividade Motora
5.
J Neurosci ; 38(35): 7725-7740, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30037828

RESUMO

Control of locomotion relies on motor loops conveying modulatory signals between brainstem and spinal motor circuits. We investigated the steering control of the brainstem reticular formation over the spinal locomotor networks using isolated brainstem-spinal cord preparations of male and female neonatal rats. First, we performed patch-clamp recordings of identified reticulospinal cells during episodes of fictive locomotion. This revealed that a spinal ascending phasic modulation of reticulospinal cell activity is already present at birth. Half of the cells exhibited tonic firing during locomotion, while the other half emitted phasic discharges of action potentials phase locked to ongoing activity. We next showed that mimicking the phasic activity of reticulospinal neurons by applying patterned electrical stimulation bilaterally at the ventral caudal medulla level triggered fictive locomotion efficiently. Moreover, the brainstem stimuli-induced locomotor rhythm was entrained in a one-to-one coupling over a range of cycle periods (2-6 s). Additionally, we induced turning like motor outputs by either increasing or decreasing the relative duration of the stimulation trains on one side of the brainstem compared to the other. The ability of the patterned descending command to control the locomotor output depended on the functional integrity of ventral reticulospinal pathways and the involvement of local spinal central pattern generator circuitry. Altogether, this study provides a mechanism by which brainstem reticulospinal neurons relay steering and speed commands to the spinal locomotor networks.SIGNIFICANCE STATEMENT Locomotor function allows the survival of most animal species while sustaining the expression of fundamental behaviors. Locomotor activities adapt from moment to moment to behavioral and environmental changes. We show that the brainstem can control the spinal locomotor network outputs through phasic descending commands that alternate bilaterally. Manipulating the periodicity and/or the relative durations of the left and right descending commands at the brainstem level is efficient to set the locomotor speed and sustain directional changes.


Assuntos
Animais Recém-Nascidos/fisiologia , Tronco Encefálico/fisiologia , Locomoção/fisiologia , Animais , Vias Eferentes/fisiologia , Estimulação Elétrica , Feminino , Masculino , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Formação Reticular/fisiologia , Serotonina/farmacologia , Medula Espinal/fisiologia
6.
Int J Mol Sci ; 21(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906250

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) has been successfully used in the treatment of Parkinson's disease (PD) for more than 50 years. It fulfilled the criteria to cross the blood-brain barrier and counteract the biochemical defect of dopamine (DA). It remarkably worked after some adjustments in line with the initial hypothesis, leaving a poor place to the plethora of mechanisms involving other neurotransmitters or mechanisms of action beyond newly synthesized DA itself. Yet, its mechanism of action is far from clear. It involves numerous distinct cell populations and does not mimic the mechanism of action of dopaminergic agonists. L-DOPA-derived DA is mainly released by serotonergic neurons as a false neurotransmitter, and serotonergic neurons are involved in L-DOPA-induced dyskinesia. The brain pattern and magnitude of DA extracellular levels together with this status of false neurotransmitters suggest that the striatal effects of DA via this mechanism would be minimal. Other metabolic products coming from newly formed DA or through the metabolism of L-DOPA itself could be involved. These compounds can be trace amines and derivatives. They could accumulate within the terminals of the remaining monoaminergic neurons. These "false neurotransmitters," also known for some of them as inducing an "amphetamine-like" mechanism, could reduce the content of biogenic amines in terminals of monoaminergic neurons, thereby impairing the exocytotic process of monoamines including L-DOPA-induced DA extracellular outflow. The aim of this review is to present the mechanism of action of L-DOPA with a specific attention to "false neurotransmission."


Assuntos
Corpo Estriado , Dopamina/metabolismo , Levodopa/uso terapêutico , Neurotransmissores/metabolismo , Doença de Parkinson , Neurônios Serotoninérgicos , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia
7.
Glia ; 66(8): 1663-1677, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665077

RESUMO

Traumatic brain injury (TBI) is a leading cause of hospital visits in pediatric patients and often leads to long-term disorders even in cases of mild severity. White matter (WM) alterations are commonly observed in patients months or years after the injury assessed by magnetic resonance imaging (MRI), but little is known about WM pathophysiology early after mild pediatric TBI. To evaluate the status of the gliovascular unit in this context, mild TBI was induced in postnatal-day 17 mice using a closed head injury model with two grades of severity (G1, G2). G2 resulted in significant WM edema (increased T2-signal) and BBB damage (IgG-extravasation immunostaining) whereas decreased T2 and the increased levels of astrocytic water-channel AQP4 were observed in G1 mice 1 day post-injury. Both severities induced astrogliosis (GFAP immunolabeling). No changes in myelin and neurofilament were detected at this acute time point. One month after injury G2 mice exhibited diffusion tensor imaging MRI alterations (decreased fractional anisotropy) accompanied by decreased neurofilament staining in the WM. Both severities induced behavioral impairments at this time point. In conclusion, long-term deficits and WM changes similar to those found after clinical TBI are preceded by distinct early gliovascular phenotype alterations after juvenile mild TBI, revealing AQP4 as a potential candidate for severity-based treatments.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Fechados/patologia , Tempo , Substância Branca/patologia , Animais , Astrócitos/patologia , Encéfalo/patologia , Transtornos Cognitivos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL
8.
J Neurosci Res ; 96(2): 194-206, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28419510

RESUMO

Here we assess the potential functional role of increased aquaporin 9 (APQ9) in astrocytes. Increased AQP9 expression was achieved in primary astrocyte cultures by transfection of a plasmid-containing green fluorescent protein fused to either wild-type or mutated human AQP9. Increased AQP9 expression and phosphorylation at Ser222 were associated with a significant change in astrocyte morphology, mainly with a higher number of processes. Similar phenotypic changes are observed in astrogliosis processes after injury. In parallel, we observed that in vivo, thrombin preconditioning before ischemic stroke induced an early increase in AQP9 expression in the male mouse brain. This increased AQP9 expression was also associated with astrocyte morphological changes, especially in the white matter tract. Astrocyte reactivity is debated as being either beneficial or deleterious. As thrombin preconditioning leads to a decrease in lesion size after stroke, our data suggest that the early increase in AQP9 concomitant with astrocyte reactivity leads to a beneficial effect. © 2017 Wiley Periodicals, Inc.


Assuntos
Aquaporinas/metabolismo , Astrócitos/metabolismo , Regulação da Expressão Gênica/fisiologia , Gliose/patologia , Animais , Aquaporina 4/metabolismo , Aquaporinas/genética , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Serina/metabolismo , Transfecção
9.
J Neurosci ; 35(15): 6117-30, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878284

RESUMO

Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry. However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneurons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic component coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels.


Assuntos
Locomoção/fisiologia , Neurônios Motores/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Colina O-Acetiltransferase/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Técnicas In Vitro , Região Lombossacral , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Compostos Orgânicos/metabolismo , Técnicas de Patch-Clamp , Periodicidade , Ratos , Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
10.
Front Neuroanat ; 16: 953746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968158

RESUMO

Central motor rhythm-generating networks controlling different functions are generally considered to operate mostly independently from one another, each controlling the specific behavioral task to which it is assigned. However, under certain physiological circumstances, central pattern generators (CPGs) can exhibit strong uni- or bidirectional interactions that render them closely inter-dependent. One of the best illustrations of such an inter-CPG interaction is the functional relationship that may occur between rhythmic locomotor and respiratory functions. It is well known that in vertebrates, lung ventilatory rates accelerate at the onset of physical exercise in order to satisfy the accompanying rapid increase in metabolism. Part of this acceleration is sustained by a coupling between locomotion and ventilation, which most often results in a periodic drive of the respiratory cycle by the locomotor rhythm. In terrestrial vertebrates, the likely physiological significance of this coordination is that it serves to reduce the mechanical interference between the two motor systems, thereby producing an energetic benefit and ultimately, enabling sustained aerobic activity. Several decades of studies have shown that locomotor-respiratory coupling is present in most species, independent of the mode of locomotion employed. The present article aims to review and discuss mechanisms engaged in shaping locomotor-respiratory coupling (LRC), with an emphasis on the role of sensory feedback inputs, the direct influences between CPG networks themselves, and finally on spinal cellular candidates that are potentially involved in the coupling of these two vital motor functions.

11.
J Neurotrauma ; 38(3): 373-384, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33076741

RESUMO

Spinal cord injury (SCI) is one of the leading causes of neurological disability and death. So far, there is no satisfactory treatment for SCI, because of its complex and ill-defined pathophysiology. Recently, autophagy has been implicated as protective in acute SCI rat models. Here, we investigated the therapeutic value of a dietary intervention, namely, intermittent fasting (IF), on neuronal survival after acute SCI in rats, and its underlying mechanism related to autophagy regulation. We found remarkable improvement in both behavioral performance and neuronal survival at the injured segment of the spinal cord of animals previously subjected to IF. Western blotting revealed a marked decrease in apoptosis-related markers such as cleaved caspase 3 levels and the bax/bcl-2 ratio in the IF group, which suggested an inhibition of the intrinsic apoptosis pathway. In addition, the expression of the autophagy markers LC3-II and beclin 1 was also increased in the IF group compared with ad libitum fed animals. In parallel, IF decreased the levels of the substrate protein of autophagy, p62, indicative of an upregulation of the autophagic processes. Treatment with 3-methyladenine (3-MA), a selective inhibitor of autophagy, reversed the downregulated apoptosis-related markers by IF. Finally, IF could activate the adenosine monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway and enhance lysosome function by upregulating transcription factor (TF)EB expression. Altogether, the present findings suggest that IF exerts a neuroprotective effect after acute SCI via the upregulation of autophagy, and further points to dietary interventions as a promising combinatorial treatment for SCI.


Assuntos
Autofagia/fisiologia , Jejum , Neurônios/patologia , Traumatismos da Medula Espinal/dietoterapia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Masculino , Atividade Motora , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
12.
Curr Biol ; 31(4): 707-721.e7, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33306949

RESUMO

The basal ganglia (BG) inhibit movements through two independent circuits: the striatal neuron-indirect and the subthalamic nucleus-hyperdirect pathways. These pathways exert opposite effects onto external globus pallidus (GPe) neurons, whose functional importance as a relay has changed drastically with the discovery of two distinct cell types, namely the prototypic and the arkypallidal neurons. However, little is known about the synaptic connectivity scheme of different GPe neurons toward both motor-suppressing pathways, as well as how opposite changes in GPe neuronal activity relate to locomotion inhibition. Here, we optogenetically dissect the input organizations of prototypic and arkypallidal neurons and further define the circuit mechanism and behavioral outcome associated with activation of the indirect or hyperdirect pathways. This work reveals that arkypallidal neurons are part of a novel disynaptic feedback loop differentially recruited by the indirect or hyperdirect pathways and that broadcasts inhibitory control onto locomotion only when arkypallidal neurons increase their activity.


Assuntos
Globo Pálido/citologia , Locomoção/fisiologia , Vias Neurais , Sinapses , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Optogenética , Núcleo Subtalâmico/citologia
13.
J Neurophysiol ; 104(2): 1119-33, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20573971

RESUMO

The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.


Assuntos
Fenômenos Biomecânicos/fisiologia , Locomoção/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Gatos , Modelos Animais de Doenças , Eletromiografia , Teste de Esforço/métodos , Lateralidade Funcional/fisiologia , Membro Posterior/fisiopatologia , Recuperação de Função Fisiológica/fisiologia
14.
Neurophysiol Clin ; 50(6): 467-477, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33176989

RESUMO

Body displacement during locomotion is a major challenge for motor control, requiring complex synergistic postural regulation and the integrated functioning of all body musculature, including that of the four limbs, trunk and neck. Despite the obvious pivotal role played by the trunk during locomotion, most studies devoted to understanding the neural basis of locomotor control have only addressed the operation of the neural circuits driving leg movements, and relatively little is known of the networks that control trunk muscles in limbed vertebrates. This review addresses this issue, both in animals and humans. We first review studies addressing the central role played by central pattern generator (CPG) circuit interactions within the spinal cord in coordinating trunk and hind limb muscle activities in a variety of vertebrates, and present evidence that vestibulo-spinal reflexes are differentially involved in trunk and hind limb control. We finally highlight the role of the various components that participate in maintaining dynamic equilibrium during stepping, including connective tissues. We propose that many aspects of the organization of the motor systems involved in trunk-hind limb movement control in vertebrates have been highly conserved throughout evolution.


Assuntos
Marcha , Locomoção , Animais , Extremidades , Humanos , Postura , Medula Espinal
15.
Neuropharmacology ; 170: 107815, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31634501

RESUMO

Descending neuromodulators from the brainstem play a major role in the development and regulation of spinal sensorimotor functions. Here, the contribution of serotonergic signaling in the lumbar spinal cord was investigated in the context of the generation of locomotor activity. Experiments were performed on in vitro spinal cord preparations from newborn rats (0-5 days). Rhythmic locomotor episodes (fictive locomotion) triggered by tonic electrical stimulations (2Hz, 30s) of a single sacral dorsal root were recorded from bilateral flexor-dominated (L2) and extensor-dominated (L5) ventral roots. We found that the activity pattern induced by sacral stimulation evolves over the 5 post-natal (P) day period. Although alternating rhythmic flexor-like motor bursts were expressed at all ages, the locomotor pattern of extensor-like bursting was progressively lost from P1 to P5. At later stages, serotonin (5-HT) and quipazine (5-HT2A receptor agonist) at concentrations sub-threshold for direct locomotor network activation promoted sacral stimulation-induced fictive locomotion. The 5-HT2A receptor antagonist ketanserin could reverse the agonist's action but was ineffective when fictive locomotion was already expressed in the absence of 5-HT (mainly before P2). Although inhibiting 5-HT7 receptors with SB266990 did not affect locomotor pattern organization, activating 5-HT1A receptors with 8-OH-DPAT specifically deteriorated extensor phase motor burst activity. We conclude that during the first 5 post-natal days in rat, serotonergic signaling in the lumbar cord becomes increasingly critical for the expression of fictive locomotion. Our findings therefore further underline the importance of both descending serotonergic and sensory afferent pathways in shaping locomotor activity during postnatal development. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Assuntos
Locomoção/efeitos dos fármacos , Sacro/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Serotonina/farmacologia , Raízes Nervosas Espinhais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Estimulação Elétrica/métodos , Feminino , Locomoção/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Sacro/inervação , Sacro/fisiologia , Raízes Nervosas Espinhais/fisiologia
16.
J Neurosci ; 28(15): 3976-87, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18400897

RESUMO

The re-expression of hindlimb locomotion after complete spinal cord injuries (SCIs) is caused by the presence of a spinal central pattern generator (CPG) for locomotion. After partial SCI, however, the role of this spinal CPG in the recovery of hindlimb locomotion in the cat remains mostly unknown. In the present work, we devised a dual-lesion paradigm to determine its possible contribution after partial SCI. After a partial section of the left thoracic segment T10 or T11, cats gradually recovered voluntary quadrupedal locomotion. Then, a complete transection was performed two to three segments more caudally (T13-L1) several weeks after the first partial lesion. Cats that received intensive treadmill training after the partial lesion expressed bilateral hindlimb locomotion within hours of the complete lesion. Untrained cats however showed asymmetrical hindlimb locomotion with the limb on the side of the partial lesion walking well before the other hindlimb. Thus, the complete spinalization revealed that the spinal CPG underwent plastic changes after the partial lesions, which were shaped by locomotor training. Over time, with further treadmill training, the asymmetry disappeared and a bilateral locomotion was reinstated. Therefore, although remnant intact descending pathways must contribute to voluntary goal-oriented locomotion after partial SCI, the recovery and re-expression of the hindlimb locomotor pattern mostly results from intrinsic changes below the lesion in the CPG and afferent inputs.


Assuntos
Atividade Motora , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Gatos , Extremidades/fisiopatologia , Feminino , Vértebras Lombares , Masculino , Plasticidade Neuronal , Condicionamento Físico Animal , Medula Espinal/patologia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/reabilitação , Vértebras Torácicas
17.
J Neurosci ; 28(35): 8810-20, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18753383

RESUMO

Movement-derived sensory feedback adapts centrally generated motor programs to changing behavioral demands. Motor circuit output may also be shaped by distinct proprioceptive systems with different central actions, although little is known about the integrative processes by which such convergent sensorimotor regulation occurs. Here, we explore the combined actions of two previously identified proprioceptors on the gastric mill motor network in the lobster stomatogastric nervous system. Both mechanoreceptors [anterior gastric receptor (AGR) and posterior stomach receptor (PSR)] access the gastric circuit via the same pair of identified projection interneurons that either excite [commissural gastric (CG)] or inhibit [gastric inhibitor (GI)] different subsets of gastric network neurons. Mechanosensory information from the two receptors is integrated upstream to the gastric circuit at two levels: (1) postsynaptically, where both receptors excite the GI neuron while exerting opposing effects on the CG neuron, and (2) presynaptically, where PSR reduces AGR's excitation of the CG projection neuron. Concomitantly PSR selectively enhances AGR's activation of the GI neuron, possibly also via a presynaptic action. PSR's influences also far outlast its transient synaptic effects, indicating the additional involvement of modulatory processes. Consequently, PSR activation causes parallel input from AGR to be conveyed preferentially via the GI interneuron, resulting in a prolonged switch in the pattern of gastric circuit output. Therefore, via a combination of short- and long-lasting, presynaptic and postsynaptic actions, one proprioceptive system is able to promote its impact on a target motor network by biasing the access of a different sensory system to the same circuit.


Assuntos
Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/fisiologia , Atividade Motora/fisiologia , Neurônios/fisiologia , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia , Vias Aferentes/fisiologia , Análise de Variância , Animais , Comportamento Animal , Linhagem Celular , Sistema Digestório/inervação , Estimulação Elétrica/métodos , Lateralidade Funcional , Técnicas In Vitro , Modelos Biológicos , Músculo Esquelético/inervação , Nephropidae , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Neurônios/classificação , Periodicidade , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Transmissão Sináptica/efeitos da radiação , Fatores de Tempo
18.
J Neurophysiol ; 102(5): 2667-80, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19726726

RESUMO

Locomotion involves dynamic interactions between the spinal cord, supraspinal signals, and peripheral sensory inputs. After incomplete spinal cord injury (SCI), interactions are disrupted, and remnant structures must optimize function to maximize locomotion. We investigated if cutaneous reflexes are altered following a unilateral partial spinal lesion and whether changes are retained within spinal circuits after complete spinal transection (i.e., spinalization). Four cats were chronically implanted with recording and stimulating electrodes. Cutaneous reflexes were evoked with cuff electrodes placed around left and right superficial peroneal nerves. Control data, consisting of hindlimb kinematics and electromyography (bursts of muscular activity and cutaneous reflexes), were recorded during treadmill locomotion. After stable control data were achieved (53-67 days), a partial spinal lesion was made at the 10th or 11th thoracic segment (T(10)-T(11)) on the left side. Cats were trained to walk after the partial lesion, and following a recovery period (64-80 days), a spinalization was made at T(13). After the partial lesion, changes in short-latency excitatory (P1) homologous responses between hindlimbs, evoked during swing, were largely asymmetric in direction relative to control values, whereas changes in longer-latency excitatory (P2) and crossed responses were largely symmetric in direction. After spinalization, cats could display hindlimb locomotion within 1 day. Early after spinalization, reflex changes persisted a few days, but over time homologous P1 responses increased symmetrically toward or above control levels. Therefore changes in cutaneous reflexes after the partial lesion and retention following spinalization indicate an important spinal plasticity after incomplete SCI.


Assuntos
Locomoção/fisiologia , Reflexo/fisiologia , Pele , Traumatismos da Medula Espinal/fisiopatologia , Tato/fisiologia , Análise de Variância , Animais , Fenômenos Biomecânicos , Gatos , Estimulação Elétrica/métodos , Eletromiografia/métodos , Lateralidade Funcional/fisiologia , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Músculo Esquelético/fisiopatologia , Nervo Fibular/fisiopatologia , Condicionamento Físico Animal , Tempo de Reação/fisiologia , Pele/fisiopatologia , Traumatismos da Medula Espinal/patologia
19.
Brain Res Rev ; 57(1): 228-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17822774

RESUMO

The present paper reviews aspects of locomotor sensorimotor interactions by focussing on work performed in spinal cats. We provide a brief overview of spinal locomotion and describe the effects of various types of sensory deprivations (e.g. rhizotomies, and lesions of muscle and cutaneous nerves) to highlight the spinal neuroplasticity necessary for adapting to sensory loss. Recent work on plastic interactions between reflex pathways that could be responsible for such plasticity, in particular changes in proprioceptive and cutaneous pathways that occur during locomotor training of spinal cats, is discussed. Finally, we describe how stimulation of some sensory inputs via various limb manipulations or intraspinal electrical stimulation can affect the expression of spinal locomotion. We conclude that sensory inputs are critical not only for locomotion but also that changes in the efficacy of sensory transmission and in the interactions between sensory pathways could participate in the normalization of locomotion after spinal and/or peripheral lesions.


Assuntos
Locomoção/fisiologia , Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos , Nervos Periféricos/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Gatos , Estado de Descerebração/fisiopatologia , Estimulação Elétrica , Propriocepção/fisiologia , Pele/inervação
20.
J Physiol ; 586(7): 1903-20, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18258661

RESUMO

In the present study, we investigated the modulation of short-term depression (STD) at synapses between sensory afferents and rat motoneurons by serotonin, dopamine and noradrenaline. STD was elicited with trains of 15 stimuli at 1, 5 and 10 Hz and investigated using whole-cell voltage-clamp recordings from identified motoneurons in the neonatal rat spinal cord in vitro. STD was differentially modulated by the amines. Dopamine was effective at all stimulation frequencies, whereas serotonin affected STD only during 5 and 10 Hz stimulus trains and noradrenaline during 1 and 5 Hz trains. Dopamine and serotonin homogenized the degree of depression observed with the different stimulation modalities, in contrast to noradrenaline, which amplified the rate differences. The different modulatory profiles observed with the amines were partly due to GABAergic interneuron activity. In the presence of GABA(A) and GABA(B) receptor antagonists, the rate and/or kinetics of STD did not vary with the stimulation frequency in contrast to the control condition, and noradrenaline failed to alter either synaptic amplitude or STD, suggesting indirect actions. Dopamine and serotonin strongly decreased STD and converted depression to facilitation at 5 and 10 Hz during the blockade of the GABAergic receptors in 50% of the neurons tested. Altogether, these results show that STD expressed at sensorimotor synapses in the neonatal rat not only is a function of the frequency of afferent firing but also closely depends on the neuromodulatory state of these connections, with a major contribution from GABAergic transmission.


Assuntos
Neurônios Motores/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/fisiologia , Neurotransmissores/farmacologia , Medula Espinal/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Dopamina/farmacologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios Motores/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios Aferentes/efeitos dos fármacos , Norepinefrina/farmacologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/fisiologia , Serotonina/farmacologia , Simpatomiméticos/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA