Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843775

RESUMO

The quest for planar hypercoordinate atoms (phA) beyond six has predominantly focused on transition metals, with dodecacoordination being the highest reported thus far. Extending this bonding scenario to main-group elements, which typically lack d orbitals despite their larger atomic radius, has posed significant challenges. Intrigued by the potentiality of covalent bonding formation using the d orbitals of the heavier alkaline-earth metals (Ae = Ca, Sr, Ba), the so-called "honorary transition metals", we aim to push the boundaries of planar hypercoordination. By including rings formed by 12-15 atoms of boron-carbon and Ae centers, we propose a design scheme of 180 candidates with a phA. Further systematic screening, structural examination, and stability assessments identified 10 potential clusters with a planar hypercoordinate alkaline-earth metal (phAe) as the lowest-energy form. These unconventional structures embody planar dodeca-, trideca-, tetradeca-, and pentadecacoordinate atoms. Chemical bonding analyses reveal the important role of Ae d orbitals in facilitating covalent interactions between the central Ae atom and the surrounding boron-carbon rings, thereby establishing a new record for coordination numbers in the two-dimensional realm.

2.
Phys Chem Chem Phys ; 26(10): 8089-8093, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381157

RESUMO

In this study, we delved into the structure of B5H5 and questioned some of its accepted assumptions. By exploring the potential energy surface, we found a new three-dimensional structure as the global minimum. This finding is in contrast with the previously hypothesized planar and cage-like models. Our exploration extends to the kinetic stability of various B5H5 isomers, offering insights into the dynamic behavior of these molecules.

3.
Phys Chem Chem Phys ; 25(30): 20759, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489011

RESUMO

Correction for 'Structure and bonding of molecular stirrers with formula B7M2- and B8M2 (M = Zn, Cd, Hg)' by Rui Yu et al., Phys. Chem. Chem. Phys., 2020, 22, 12312-12320, https://doi.org/10.1039/D0CP01603A.

4.
Chem Soc Rev ; 51(3): 1098-1123, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35029622

RESUMO

In the last decades, experimental techniques in conjunction with theoretical analyses have revealed the surprising structural diversity of boron clusters. Although the 2D to 3D transition thresholds are well-established, there is no certainty about the factors that determine the geometry adopted by these systems. The structural transformation induced by doping usually yields a minimum energy structure with a boron skeleton entirely different from that of the bare cluster. This review summarizes those clusters no larger than 40 boron atoms where one or two dopants show a radical transformation of the structure. Although the structures of these systems are not easy to predict, they often adopt familiar shapes such as umbrella-like, wheel, tubular, and cages in various cases.

5.
Anal Chem ; 93(50): 16853-16861, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34890188

RESUMO

The direct quantification of multiple ions in aqueous mixtures is achieved by combining an automated machine learning pipeline with transient potentiometric data obtained from a single miniaturized array of polymeric sensors electrodeposited on a conventional printed circuit board (PCB) substrate. A proof-of-concept system was demonstrated by employing 16 polymeric sensors in combination with features extracted from the transient differential voltages produced by these sensors when transitioning from a reference solution to a test solution, thereby obviating the need for a conventional reference electrode. A tree-based regression model enabled concentrations of various metal cations in pure solutions to be determined in less than 2 min. In a model mixture comprising Al3+, Cu2+, Na+, and Fe3+, the mean relative error was found to depend on the type of ion and varied between 1% for Fe3+ and 44% for Na+ in the concentration range 1-10 mg/L. Overall, a mean relative error of 16% was obtained for quantification of these four ions across a total of 124 tests in different solutions spanning concentrations between 2 and 360 mg/L. These results demonstrate how the analytical capability of a multiselective sensor array can leverage data-driven approaches through training by examples for accelerated testing and can be proposed to complement traditional analytical tools to meet industrial demands, including traceability of chemicals.


Assuntos
Aprendizado de Máquina , Cátions
6.
Chemistry ; 27(67): 16701-16706, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617347

RESUMO

After exploring the potential energy surfaces of Mm CE2 p (E=S-Te, M=Li-Cs, m=2, 3 and p=m-2) and Mn CE3 q (E=S-Te, M=Li-Cs, n=1, 2, q=n-2) combinations, we introduce 38 new global minima containing a planar hypercoordinate carbon atom (24 with a planar tetracoordinate carbon and 14 with a planar pentacoordinate carbon). These exotic clusters result from the decoration of V-shaped CE2 2- and Y-shaped CE3 2- dianions, respectively, with alkali counterions. All these 38 systems fulfill the geometrical and electronic criteria to be considered as true planar hypercoordinate carbon systems. Chemical bonding analyses indicate that carbon is covalently bonded to chalcogens and ionically connected to alkali metals.

7.
J Phys Chem A ; 125(26): 5753-5764, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34161099

RESUMO

The pseudo-π model yields current densities and induced magnetic fields that mimic the π-component, allowing investigations of large molecular structures, whether they are planar or not, at a low computational cost but with high accuracy. Herein the π-contribution to the magnetically induced current densities and induced magnetic fields of large planar molecules and nonplanar molecules (such as [10]cyclophenacene and chiral toroidal nanotubes C2016 and C2196) were computed using the pseudo-π model with the gauge-including magnetically induced currents method. Additionally, we provide a way to determine the π-component of the ring-current strengths, which can be used for assessing the aromatic character of large carbon molecules.

8.
J Phys Chem A ; 125(14): 3009-3014, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33797250

RESUMO

The exhaustive exploration of the potential energy surfaces of CE2M2 (E = Si-Pb; M = Li and Na) revealed seven global minima containing a planar tetracoordinate carbon (ptC). The design, based on a π-localization strategy, resulted in a ptC with two double bonds forming a linear or a bent allene-type E═C═E motif. The magnetic response of the bent E═C═E fragments support a σ-aromaticity. The bonding analysis indicated that the ptCs form C-E covalent bonds and C-M electrostatic interactions.

9.
Angew Chem Int Ed Engl ; 60(16): 8700-8704, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33527696

RESUMO

Herein, the first global minima containing a planar hexacoordinate carbon (phC) atom are reported. The fifteen structures belong to the CE3 M3 + (E=S-Te and M=Li-Cs) series and satisfy both geometric and electronic criteria to be considered as a true phC. The design strategy consisted of replacing oxygen in the D3h  CO3 Li3 + structure with heavy and less electronegative chalcogens, inducing a negative charge on the C atom and an attractive electrostatic interaction between C and the alkali-metal cations. The chemical bonding analyses indicate that carbon is covalently bonded to three chalcogens and ionically connected to the three alkali metals.

10.
Acc Chem Res ; 52(9): 2732-2744, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31487150

RESUMO

Isolated boron clusters exhibit many intriguing properties, which have only recently been unfolding with the hand-in-hand advancement of state-of-the-art experimental and theoretical methods for the analyses of their electronic structure, chemical reactivity, and nuclear dynamics. A fascinating property that a number of these clusters display is fluxionality, a dynamical phenomenon associated with the delocalized nature of the chemical bonding and related to the continuous exchange between interatomic neighbors. The electron-deficient nature of boron is the driving force behind its extraordinary ability to form multicenter bonds, and this in turn leads to fluxional behavior only when an appropriate combination of topology and bonding is present. The first instance of fluxionality in boron clusters, the quasi-planar anion B19-, was reported in 2010. The rotational barrier of the inner B6 unit spinning within the peripheral B13 ring can be overcome even at low temperature, mimicking the characteristic motion of a rotary internal combustion engine, and hence, B19- was entitled a boron-based molecular Wankel engine. Shortly after that, it was found that other quasi-planar boron clusters, like B13+ and B182-, also exhibit an almost barrier-free rotation of internal planar moieties. The case of the B13+ cation is special because, on the one hand, it was chosen to examine the way to initiate, control, and direct the internal rotation using circularly polarized laser radiation, and on the other hand, the experimental manifestation of fluxionality was first established for this system through infrared experiments. Nevertheless, fluxional behavior is not limited to planar or pure boron clusters. Larger boron clusters, such as the fullerene-analogue borospherenes B40 and B39-, are also predicted to show pronounced dynamical behavior that is related to the interconversion between six- and seven-membered rings. Be6B11-, a triple-layer cluster, is another particularly interesting system since it exhibits multifold fluxionality consisting of the revolution of the outer boron ring around the Be6 core and the spinning of the two Be3 rings with respect to each other. The essential criteria for dynamical behavior in boron clusters are (1) the absence of a localized two-center, two-electron (2c-2e) bond between two molecular regions that tend to rotate with respect to each other, (2) the absence of steric hindrances for rotation and reorganization, and (3) retention of the delocalized electronic structure throughout the rotation/reorganization process. The fulfillment of the above three conditions ensures that low energy barriers will be associated with the rotation or reorganization of molecular moieties. The first two points can be illustrated from the facts that a single localized C-B σ bond in CB18 raises the rotational barrier by 27.0 kcal·mol-1 and the expansion of the outer ring by a single boron atom in moving from B12+ to B13+ lowers the rotational barrier by 7.5 kcal·mol-1. Alternatively, it is also possible to make a rigid boron cluster fluxional through doping, where the geometric and electronic changes caused by a suitable dopant, as in MB12- (M = Co, Rh, Ir) and B10Ca, reduce the corresponding rotational barriers enough to achieve fluxionality. At present, there are 13 pure boron clusters (B11-/0/+, B13+/0/-, B15+/0/-, B182-, B19-, and B20-/2-) and eight metal-doped boron clusters (B10Ca, NiB11-, [B2-Ta@B18]-, Be6B11-, Be6B102-, and MB18- (M = K, Rb, Cs)) that have sufficiently small rotational barriers (less than ∼1.5 kcal·mol-1) to exhibit fluxional behavior at low temperature. Some of the other reported boron clusters show more sizable barriers, and their dynamical behavior is manifested only at elevated temperatures. The research on such systems is driven by the notion that it ultimately will pave the way for the development of light-harvesting boron-based nanomotors/machines and robots, a reality that may not be that far away!

11.
Chemistry ; 26(1): 326-330, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680347

RESUMO

Helicenes consist of several fused rings twisted around an axis, forming a cylindrical helix, with π-delocalized electrons in the non-planar rings. Induced magnetic fields dissecting the orbital contributions of [6]-, [7]-, and [14]helicene are discussed. Computations show a deshielding cone produced by the π-electrons along the helical axis. Unexpectedly, the response of the core electrons produces a shielding cone, which is cumulative and sensitive to the curvature of the systems owing to the overlap of the other ring responses. A warning is provided regarding the evaluation of the delocalization in curved systems in which the x- and y-components of the induced magnetic field become relevant.

12.
Chemistry ; 26(51): 11727-11733, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32243632

RESUMO

Two new crystalline rotors 1 and 2 assembled through N-H⋅⋅⋅N hydrogen bonds by using halogenated carbazole as stators and 1,4-diaza[2.2.2]bicyclooctane (DABCO) as the rotator, are described. The dynamic characterization through 1 H T1 relaxometry experiments indicate very low rotational activation barriers (Ea ) of 0.67 kcal mol-1 for 1 and 0.26 kcal mol-1 for 2, indicating that DABCO can reach a THz frequency at room temperature in the latter. These Ea values are supported by solid-state density functional theory computations. Interestingly, both supramolecular rotors show a phase transition between 298 and 250 K, revealed by differential scanning calorimetry and single-crystal X-ray diffraction. The subtle changes in the crystalline environment of these rotors that can alter the motion of an almost barrierless DABCO are discussed here.

13.
Chemphyschem ; 21(2): 145-148, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31721418

RESUMO

Through delicate tuning of the electronic structure, we report herein a rational design of seventeen new putative global minimum energy structures containing a planar tetra- or pentacoordinate carbon atom embedded in an aromatic hydrocarbon. These structures are the result of replacing three consecutive hydrogen atoms of an aromatic hydrocarbon by less electronegative groups, forming a multicenter σ-bond with the planar hypercoordinate carbon atom and participating in the π-electron delocalization. This strategy that maximizes both mechanical and electronic effects through aromatic architectures can be extended to several molecular combinations to achieve new and diverse compounds containing planar hypercoordinate carbon centers.

14.
J Org Chem ; 85(23): 15415-15421, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33210538

RESUMO

A fresh look on helicenes' enantiomerization process with a focus on ring conformation reveals that it can be described as a step-by-step mechanism in which maximal distortion is consecutively transferred along the helicene skeleton, head to tail. Density functional theory methods were used to compute the enantiomerization pathway, and continuous symmetry measures were applied to quantify the distortion of even-number helicenes with 8-14 rings. Our findings show that the distortion wave is additive-the process always starts from one edge of the helicene and progresses along the rings until the other edge is reached. As more rings are added to the helicene, extra steps are appended to the distortion wave. Implications of this fundamental process are discussed in light of similar natural phenomena from polymer dynamics to snake locomotion.

15.
Phys Chem Chem Phys ; 22(30): 17344-17350, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32697205

RESUMO

After an exhaustive exploration of the potential energy surface of B12E- and B12E2 (E = Li-Cs) systems, it was found that for the anionic series, a cage-type and a quasi-planar structure (very similar to the naked B12 cluster) compete to be the putative global minimum. For neutral systems, competition arises between the quasi-planar cluster and a double-ring with the alkali-metals on the highest-symmetry axis. The chemical bonding analyses show that for the entire series, the interaction, predominantly electrostatic, is essentially indistinguishable regardless of the alkali-metal and insufficient for determining the isomeric preference. The isomerization energy decomposition analysis (IEDA) reveals that in the anions, the structural change in the lighter complexes is possible because of the relatively low energy required for the boron skeleton deformation, as opposed to the case of heavy metals. In the case of the neutral systems, the factor determining one isomer over the other corresponds to that of the energy deformation of the alkali-metal dimer.

16.
Phys Chem Chem Phys ; 22(21): 12312-12320, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32432637

RESUMO

In this work, we systematically explored clusters with formula B7M2- and B8M2 (M = Zn, Cd, Hg). The putative global minima are formed by an M2 dimer and a disk-shaped boron wheel. Moreover, the chemical bonding analysis revealed that charge transfer from the metal atoms to the boron motifs resulted in (B7)3-(M2)2+ and (B8)2-(M2)2+ complexes with double (σ + π) aromatic boron wheels and a single bond for the metallic dimer. Above all, the computed rotational barriers of the M-M fragment with respect to the boron disk and molecular dynamics simulations indicate a virtually barrierless spin, resembling a magnetic stirrer on a baseplate.

17.
Phys Chem Chem Phys ; 21(13): 6935-6941, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30865191

RESUMO

To understand the effect of magnesium atom doping on boron clusters, here we report the lowest-lying energy structures and electronic properties of neutral and monoanionic magnesium-boron clusters, in which boron atoms range in size from 10 to 20, in the framework of a CALYPSO structural search and DFT calculations. One of the most stable combinations is MgB18, which adopts an unexpected tubular drum-shaped geometry that is found for the first time in boron clusters doped with alkaline-earth metal atoms. The stability of the MgB18 cluster mainly stems from the intense electrostatic interaction between the B18 skeleton and the Mg atom.

18.
Chemistry ; 24(43): 11227-11233, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29863774

RESUMO

In this work, we analyze the interactions of alkali metal cations with [6]- and [14]helicene and the cation mobility of therein. We found that the distortion of the carbon skeleton is the reason that some of the structures which are local minima for the smallest cations are not energetically stable for K+ , Rb+ , and Cs+ . Also, the most favorable complexes are those where the cation is interacting with two rings forming a metallocene-like structure, except for the largest cation Cs+ , where the distortion provoked by the size of the cation destabilizes the complex. As far as mobility is concerned, the smallest cations, particularly Na+ , are the ones that can move most efficiently. In [6]helicene, the mobility is limited by the capture of the cation forming the metallocene-like structure. In larger helicenes, the energy barriers for the cation to move are similar both inside and outside the helix. However, complexes with the cation between two layers are more energetically favored so that the movement will be preferred in that region. The bonding analysis reveals that interactions with no less than 50 % of orbital contribution are taking place for the series of E+ -[6]helicene. Particularly, the complexes of Li+ show remarkable orbital character (72.5-81.6 %).

19.
J Org Chem ; 83(21): 13045-13050, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30285442

RESUMO

The reaction mechanism for the synthesis of 1,3,4-oxadiazole-2(3 H)-ones from hydrazonyl chloride and CO2 in the presence of CsF/18-crown-6 and toluene, is revisited via density functional theory computations. Although this reaction was earlier classified as a 1,3-dipolar cycloaddition, we found some competing pathways involved therein. The mechanisms including the (F-CO2)- anion and the nitrile imine intermediate are some options. The dimerization of nitrile imine is another competing mechanism in this reaction. Our results show that the most favorable mechanism proceeds via a stepwise pathway without involving any nitrile imine intermediate or the (F-CO2)- anion. The F- anion, resulting from the formation of a complex between 18-crown-6 and Cs+ cation, deprotonates the nitrile imine precursor easily, which acts then as a nucleophilic anion, enhancing the reactivity of CO2 toward it. The mechanism for the reaction with COS, an isoelectronic analogue of CO2, is also explored.

20.
Dalton Trans ; 53(7): 2998-3009, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38265072

RESUMO

Understanding factors that influence the volatility of lanthanide complexes remains an important goal for applications such as gas-phase f-metal separations and the synthesis of lanthanide-containing thin films. Lanthanide complexes often exhibit volatility differences that depend on the ability of ligands to saturate the lanthanide coordination sphere and attenuate intermolecular bonding in the solid state. This can make it difficult to assess how electronic factors associated with differing ligand substituents influence volatility. Here we describe the synthesis, structures, and thermal properties of a series of volatile lanthanide complexes (Ln = Nd, Er, and Yb) containing N4O3 ligands decorated with different alkyl and fluoroalkyl substituents (CF3, CF2CF2CF3, Me, and tBu). These ligands completely enveloped the tested lanthanides to form monomeric complexes with 7-coordinate distorted capped octahedral coordination geometries, as determined using single-crystal X-ray diffraction. Thermogravimetric analysis and bulk sublimation studies show how metal encapsulation affords complexes with the same volatility regardless of metal size, even with lanthanide ions with significantly different radii such as Nd3+ and Yb3+. Most notably, the results show that increasing ligand fluorination, a strategy often used to increase the volatility of metal complexes, is not always beneficial and can significantly attenuate the volatility of lanthanide complexes depending on location with respect to other substituents in the ligand framework. A pair-wise model based on density functional theory shows that the net intermolecular interactions in the unit cell can still be stronger when fluorination is present. In other words, even if individual interactions between neighboring molecules are weaker, the total number of interactions in the solid arising from the nature of crystal packing is equally important to consider.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA