Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(36): 3751-3763, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39115049

RESUMO

BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.


Assuntos
Terapia Genética , Canal de Potássio KCNQ1 , Miócitos Cardíacos , Síndrome de Romano-Ward , Animais , Coelhos , Canal de Potássio KCNQ1/genética , Terapia Genética/métodos , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/terapia , Animais Geneticamente Modificados , Potenciais de Ação , Eletrocardiografia , RNA Interferente Pequeno/genética , Síndrome do QT Longo/genética , Síndrome do QT Longo/terapia , Modelos Animais de Doenças
2.
Hepatology ; 77(6): 1943-1957, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36052732

RESUMO

BACKGROUND: Morreton virus (MORV) is an oncolytic Vesiculovirus , genetically distinct from vesicular stomatitis virus (VSV). AIM: To report that MORV induced potent cytopathic effects (CPEs) in cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) in vitro models. APPROACH AND RESULTS: In preliminary safety analyses, high intranasal doses (up to 10 10 50% tissue culture infectious dose [TCID 50 ]) of MORV were not associated with significant adverse effects in immune competent, non-tumor-bearing mice. MORV was shown to be efficacious in a Hep3B hepatocellular cancer xenograft model but not in a CCA xenograft HuCCT1 model. In an immune competent, syngeneic murine CCA model, single intratumoral treatments with MORV (1 × 10 7 TCID 50 ) triggered a robust antitumor immune response leading to substantial tumor regression and disease control at a dose 10-fold lower than VSV (1 × 10 8 TCID 50 ). MORV led to increased CD8 + cytotoxic T cells without compensatory increases in tumor-associated macrophages and granulocytic or monocytic myeloid-derived suppressor cells. CONCLUSIONS: Our findings indicate that wild-type MORV is safe and can induce potent tumor regression via immune-mediated and immune-independent mechanisms in HCC and CCA animal models without dose limiting adverse events. These data warrant further development and clinical translation of MORV as an oncolytic virotherapy platform.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Terapia Viral Oncolítica , Camundongos , Humanos , Animais , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Vesiculovirus , Modelos Animais de Doenças , Linhagem Celular Tumoral
3.
J Neurophysiol ; 130(4): 941-952, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37671445

RESUMO

Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.


Assuntos
Aplysia , Comportamento Alimentar , Animais , Comportamento Alimentar/fisiologia , Aplysia/fisiologia , Ingestão de Alimentos/fisiologia , Interneurônios/fisiologia , Neurônios Motores/fisiologia , Gânglios dos Invertebrados/fisiologia
4.
J Virol ; 96(3): e0082621, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34787457

RESUMO

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Assuntos
Infecções por Adenovirus Humanos/metabolismo , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Interações Hospedeiro-Patógeno , Proteína Cofatora de Membrana/metabolismo , Adenovírus Humanos/ultraestrutura , Animais , Biomarcadores , Contagem de Células Sanguíneas , Células CHO , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Cricetulus , Modelos Animais de Doenças , Expressão Gênica , Humanos , Proteína Cofatora de Membrana/química , Proteína Cofatora de Membrana/genética , Camundongos Transgênicos , Modelos Biológicos , Modelos Moleculares , Mutagênese , Ligação Proteica , Conformação Proteica , Sorogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Relação Estrutura-Atividade
5.
J Neurosci ; 41(10): 2152-2163, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33500278

RESUMO

Modulators are generally expected to establish a network configuration that is appropriate for the current circumstances. We characterize a situation where the opposite is apparently observed. A network effect of a peptide modulator is counterproductive in that it tends to impede rather than promote the creation of the configuration that is appropriate when the modulator is released. This raises a question: why does release occur? We present data that strongly suggest that it impacts task switching. Our experiments were conducted in an Aplysia feeding network that generates egestive and ingestive motor programs. Initial experiments focused on egestive activity and the neuron B8. As activity becomes egestive, there is an increase in synaptic drive to B8 and its firing frequency increases (Wang et al., 2019). We show that, as this occurs, there is also a persistent current that develops in B8 that is outward rather than inward. Dynamic clamp introduction of this current decreases excitability. When there is an egestive-ingestive task switch in Aplysia, negative biasing is observed (i.e., a bout of egestive activity has a negative impact on a subsequent attempt to initiate an ingestive response) (Proekt et al., 2004). Using an in vitro analog of negative biasing, we demonstrate that the outward current that develops during egestive priming plays an important role in establishing this phenomenon. Our data suggest that, although the outward current induced as activity becomes egestive is counterproductive at the time, it plays an anticipatory role in that it subsequently impacts task switching.SIGNIFICANCE STATEMENT In this study, we identify a peptide-induced circuit modification (induction of an outward current) that does not immediately promote the establishment of a behaviorally appropriate network configuration. We ask why this might occur, and present data that strongly suggest that it plays an important role during task switching. Specifically, our data suggest that the outward current we characterize plays a role in the negative biasing that is seen in the mollusc Aplysia when there is a transition from egestive to ingestive activity. It is possible that the mechanism that we describe operates in other species. A negative effect of egestion on subsequent ingestion is observed throughout the animal kingdom.


Assuntos
Potenciais de Ação/fisiologia , Aplysia/fisiologia , Neurônios Motores/fisiologia , Animais , Comportamento Alimentar/fisiologia , Gânglios dos Invertebrados/fisiologia
6.
Circulation ; 143(14): 1411-1425, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33504163

RESUMO

BACKGROUND: Type 1 long QT syndrome (LQT1) is caused by loss-of-function variants in the KCNQ1-encoded Kv7.1 potassium channel α-subunit that is essential for cardiac repolarization, providing the slow delayed rectifier current. No current therapies target the molecular cause of LQT1. METHODS: A dual-component suppression-and-replacement (SupRep) KCNQ1 gene therapy was created by cloning a KCNQ1 short hairpin RNA and a short hairpin RNA-immune KCNQ1 cDNA modified with synonymous variants in the short hairpin RNA target site, into a single construct. The ability of KCNQ1-SupRep gene therapy to suppress and replace LQT1-causative variants in KCNQ1 was evaluated by means of heterologous expression in TSA201 cells. For a human in vitro cardiac model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from 4 patients with LQT1 (KCNQ1-Y171X, -V254M, -I567S, and -A344A/spl) and an unrelated healthy control. CRISPR-Cas9 corrected isogenic control iPSC-CMs were made for 2 LQT1 lines (correction of KCNQ1-V254M and KCNQ1-A344A/spl). FluoVolt voltage dye was used to measure the cardiac action potential duration (APD) in iPSC-CMs treated with KCNQ1-SupRep. RESULTS: In TSA201 cells, KCNQ1-SupRep achieved mutation-independent suppression of wild-type KCNQ1 and 3 LQT1-causative variants (KCNQ1-Y171X, -V254M, and -I567S) with simultaneous replacement of short hairpin RNA-immune KCNQ1 as measured by allele-specific quantitative reverse transcription polymerase chain reaction and Western blot. Using FluoVolt voltage dye to measure the cardiac APD in the 4 LQT1 patient-derived iPSC-CMs, treatment with KCNQ1-SupRep resulted in shortening of the pathologically prolonged APD at both 90% and 50% repolarization, resulting in APD values similar to those of the 2 isogenic controls. CONCLUSIONS: This study provides the first proof-of-principle gene therapy for complete correction of long QT syndrome. As a dual-component gene therapy vector, KCNQ1-SupRep successfully suppressed and replaced KCNQ1 to normal wild-type levels. In TSA201 cells, cotransfection of LQT1-causative variants and KCNQ1-SupRep caused mutation-independent suppression and replacement of KCNQ1. In LQT1 iPSC-CMs, KCNQ1-SupRep gene therapy shortened the APD, thereby eliminating the pathognomonic feature of LQT1.


Assuntos
Terapia Genética/métodos , Canal de Potássio KCNQ1/genética , Síndrome de Romano-Ward/terapia , Sequência de Aminoácidos , Humanos , Síndrome de Romano-Ward/genética
7.
J Neurophysiol ; 127(6): 1445-1459, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35507477

RESUMO

These experiments focus on an interneuron (B63) that is part of the feeding central pattern generator (CPG) in Aplysia californica. Previous work has established that B63 is critical for program initiation regardless of the type of evoked activity. B63 receives input from a number of different elements of the feeding circuit. Program initiation occurs reliably when some are activated, but we show that it does not occur reliably with activation of others. When program initiation is reliable, modulatory neuropeptides are released. For example, previous work has established that an ingestive input to the feeding CPG, cerebral buccal interneuron 2 (CBI-2), releases feeding circuit activating peptide (FCAP) and cerebral peptide 2 (CP-2). Afferents with processes in the esophageal nerve (EN) that trigger egestive motor programs release small cardioactive peptide (SCP). Previous studies have described divergent cellular and molecular effects of FCAP/CP-2 and SCP on the feeding circuit that specify motor activity. Here, we show that FCAP/CP-2 and SCP additionally increase the B63 excitability. Thus, we show that peptides that have well-characterized divergent effects on the feeding circuit additionally act convergently at the level of a single neuron. Since convergent effects of FCAP/CP-2 and SCP are not necessary for specifying the type of network output, we ask why they might be important. Our data suggest that they have an impact during a task switch, i.e., when there is a switch from egestive to ingestive activity.NEW & NOTEWORTHY The activity of multifunctional central pattern generators (CPGs) is often configured by neuromodulators that exert divergent effects that are necessary to specify motor output. We demonstrate that ingestive and egestive inputs to the feeding CPG in Aplysia act convergently (as well as divergently). We ask why this convergence may be important and suggest that it may be a mechanism for a type of arousal that occurs during task switching.


Assuntos
Geradores de Padrão Central , Neuropeptídeos , Animais , Aplysia/fisiologia , Comportamento Alimentar/fisiologia , Gânglios dos Invertebrados/fisiologia , Interneurônios/fisiologia , Neuropeptídeos/farmacologia
8.
Subcell Biochem ; 96: 503-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252742

RESUMO

Human adenoviruses (HAdVs) are large (150 MDa), complex, nonenveloped dsDNA viruses that cause self-limiting respiratory, ocular and enteric infections. They are significant health hazard in young, elderly and immuno-compromised populations. Moreover, various adenoviruses (AdVs) of mammalian origin are being used as vectors in gene, vaccine and cancer therapies. Multiple copies of at least 13 different proteins, all in all ~2800 protein molecules, come together to form an adenovirus virion packaging the ~36 Kbp geome. The details of structural organization of the adenovirus capsid and underlying network of protein-protein interactions provide clues into designing the modified and novel adenovirus vectors with desired functionalities and/or targeting specificities. The advancements in 3D structure determination by cryo-electron microscopy (cryo-EM) in the past decade have enabled unveiling of the complex organization of adenovirus architecture at near atomic resolution. Specifically, these studies revealed the structures and the network of interactions involving cement/minor proteins in stabilizing the AdV icosahedral architecture, which appear to be mostly conserved among human adenoviruses. In this chapter, we describe the current state of knowledge on the structure and organization of human adenoviruses.


Assuntos
Adenovírus Humanos/química , Proteínas do Capsídeo/química , Capsídeo/química , Adenovírus Humanos/ultraestrutura , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Ligação Proteica
9.
Proc Natl Acad Sci U S A ; 116(8): 3136-3145, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728302

RESUMO

Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.


Assuntos
Apresentação de Antígeno/imunologia , Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/imunologia , Linfócitos T Citotóxicos/imunologia , Sequência de Aminoácidos/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Humanos , Tolerância Imunológica , Ligantes , Ativação Linfocitária/imunologia , Camundongos , Peptídeos/genética , Peptídeos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
10.
Int J Mol Sci ; 23(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36012498

RESUMO

Sinoatrial node dysfunction can manifest as bradycardia, leading to symptoms of syncope and sudden cardiac death. Electronic pacemakers are the current standard of care but are limited due to a lack of biological chronotropic control, cost of revision surgeries, and risk of lead- and device-related complications. We therefore aimed to develop a biological alternative to electronic devices by using a clinically relevant gene therapy vector to demonstrate conversion of cardiomyocytes into sinoatrial node-like cells in an in vitro context. Neonatal rat ventricular myocytes were transduced with recombinant adeno-associated virus vector 6 encoding either hTBX18 or green fluorescent protein and maintained for 3 weeks. At the endpoint, qPCR, Western blot analysis and immunocytochemistry were used to assess for reprogramming into pacemaker cells. Cell morphology and Arclight action potentials were imaged via confocal microscopy. Compared to GFP, hTBX18-transduced cells showed that hTBX18, HCN4 and Cx45 were upregulated. Cx43 was significantly downregulated, while sarcomeric α-actinin remained unchanged. Cardiomyocytes transduced with hTBX18 acquired the tapering morphology of native pacemaker cells, as compared to the block-like, striated appearance of ventricular cardiomyocytes. Analysis of the action potentials showed phase 4 depolarization and a significant decrease in the APD50 of the hTBX18-transduced cells. We have demonstrated that rAAV-hTBX18 gene transfer to ventricular myocytes results in morphological, molecular, physiological, and functional changes, recapitulating the pacemaker phenotype in an in vitro setting. The generation of these induced pacemaker-like cells using a clinically relevant vector opens new prospects for biological pacemaker development.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Potenciais de Ação , Animais , Relógios Biológicos/fisiologia , Dependovirus , Vetores Genéticos/genética , Miócitos Cardíacos/metabolismo , Ratos
11.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574624

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Assuntos
Endorribonucleases/fisiologia , Vesículas Extracelulares/patologia , Hepatócitos/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Ceramidas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
12.
Mol Genet Metab ; 134(3): 257-266, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635437

RESUMO

Propionic acidemia (PA) is an autosomal recessive metabolic disorder after gene encoding propionyl-CoA carboxylase, Pcca or Pccb, is mutated. This genetic disorder could develop various complications which are ascribed to dysregulated propionyl-CoA metabolism in organs. However, the effect of attenuated PCC on propionyl-CoA metabolism in different organs remains to be fully understood. We investigated metabolic perturbations in organs of Pcca-/-(A138T) mice (a mouse model of PA) under chow diet and acute administration of [13C3]propionate to gain insight into pathological mechanisms of PA. With chow diet, the metabolic alteration is organ dependent. l-Carnitine reduction induced by propionylcarnitine accumulation only occurs in lung and liver of Pcca-/- (A138T) mice. [13C3]Propionate tracing data demonstrated that PCC activity was dramatically reduced in Pcca-/-(A138T) brain, lung, liver, kidney, and adipose tissues, but not significantly changed in Pcca-/-(A138T) muscles (heart and skeletal muscles) and pancreas, which was largely supported by PCCA expression data. The largest expansion of propionylcarnitine in Pcca-/-(A138T) heart after acute administration of propionate indicated the vulnerability of heart to high circulating propionate. The overwhelming propionate in blood also stimulated ketone production from the increased fatty acid oxidation in Pcca-/-(A138T) liver by lowering malonyl-CoA, which has been observed in cases where metabolic decompensation occurs in PA patients. This work shed light on organ-specific metabolic alternations under varying severities of PA.


Assuntos
Acil Coenzima A/análise , Propionatos/metabolismo , Acidemia Propiônica/fisiopatologia , Ração Animal , Animais , Modelos Animais de Doenças , Coração/fisiopatologia , Fígado/química , Fígado/fisiopatologia , Pulmão/química , Pulmão/fisiopatologia , Masculino , Análise do Fluxo Metabólico , Metabolômica , Metilmalonil-CoA Descarboxilase/genética , Camundongos , Propionatos/sangue
13.
Am J Physiol Heart Circ Physiol ; 318(3): H671-H681, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004074

RESUMO

In the murine venous thrombosis model induced by ligation of the inferior vena cava (IVCL), genetic deficiency of heme oxygenase-1 (HO-1) increases clot size. This study examined whether induction of HO-1 or administration of its products reduces thrombosis. Venous HO-1 upregulation by gene delivery reduced clot size, as did products of HO activity, biliverdin, and carbon monoxide. Induction of HO-1 by hemin reduced clot formation, clot size, and upregulation of plasminogen activator inhibitor-1 (PAI-1) that occurs in the IVCL model, while leaving urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA) expression unaltered. The reductive effect of hemin on clot size required HO activity. The IVCL model exhibited relatively high concentrations of heme that peaked just before maximum clot size, then declined as clot size decreased. Administration of hemin decreased heme concentration in the IVCL model. HO-2 mRNA was induced twofold in the IVCL model (vs. 40-fold HO-1 induction), but clot size was not increased in HO-2-/- mice compared with HO-2+/+ mice. Hemopexin, the major heme-binding protein, was induced in the IVCL model, and clot size was increased in hemopexin-/- mice compared with hemopexin+/+ mice. We conclude that in the IVCL model, the heme-degrading protein HO-1 and HO products inhibit thrombus formation, as does the heme-binding protein, hemopexin. The reductive effects of hemin administration require HO activity and are mediated, in part, by reducing PAI-1 upregulation in the IVCL model. We speculate that HO-1, HO, and hemopexin reduce clot size by restraining the increase in clot concentration of heme (now recognized as a procoagulant) that otherwise occurs.NEW & NOTEWORTHY This study provides conclusive evidence that two proteins, one heme-degrading and the other heme-binding, inhibit clot formation. This may serve as a new therapeutic strategy in preventing and treating venous thromboembolic disease.


Assuntos
Heme Oxigenase-1/metabolismo , Proteínas Ligantes de Grupo Heme/metabolismo , Regulação para Cima , Trombose Venosa/metabolismo , Animais , Modelos Animais de Doenças , Heme Oxigenase-1/genética , Proteínas Ligantes de Grupo Heme/genética , Hemina/farmacologia , Camundongos , Camundongos Knockout , Trombose Venosa/genética
14.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842321

RESUMO

Most human immunodeficiency virus type 1 (HIV-1) infections begin at mucosal surfaces. Providing a barrier of protection at these may assist in combating the earliest events in infection. Systemic immunization by intramuscular (i.m.) injection can drive mucosal immune responses, but there are data suggesting that mucosal immunization can better educate these mucosal immune responses. To test this, rhesus macaques were immunized with replicating single-cycle adenovirus (SC-Ad) vaccines expressing clade B HIV-1 gp160 by the intranasal (i.n.) and i.m. routes to compare mucosal and systemic routes of vaccination. SC-Ad vaccines generated significant circulating antibody titers against Env after a single i.m. immunization. Switching the route of second immunization with the same SC-Ad serotype allowed a significant boost in these antibody levels. When these animals were boosted with envelope protein, envelope-binding antibodies were amplified 100-fold, but qualitatively different immune responses were generated. Animals immunized by only the i.m. route had high peripheral T follicular helper (pTfh) cell counts in blood but low Tfh cell counts in lymph nodes. Conversely, animals immunized by the i.n. route had high Tfh cell counts in lymph nodes but low pTfh cell counts in the blood. Animals immunized by only the i.m. route had lower antibody-dependent cellular cytotoxicity (ADCC) antibody activity, whereas animals immunized by the mucosal i.n. route had higher ADCC antibody activity. When these Env-immunized animals were challenged rectally with simian-human immunodeficiency virus (SHIV) strain SF162P3 (SHIVSF162P3), they all became infected. However, mucosally SC-Ad-immunized animals had lower viral loads in their gastrointestinal tracts. These data suggest that there may be benefits in educating the immune system at mucosal sites during HIV vaccination.IMPORTANCE HIV-1 infections usually start at a mucosal surface after sexual contact. Creating a barrier of protection at these mucosal sites may be a good strategy for to protect against HIV-1 infections. While HIV-1 enters at mucosa, most vaccines are not delivered here. Most are instead injected into the muscle, a site well distant and functionally different than mucosal tissues. This study tested if delivering HIV vaccines at mucosa or in the muscle makes a difference in the quality, quantity, and location of immune responses against the virus. These data suggest that there are indeed advantages to educating the immune system at mucosal sites with an HIV-1 vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , HIV-1/imunologia , Imunização/métodos , Adenoviridae/imunologia , Administração Intranasal/métodos , Animais , Anticorpos Antivirais/imunologia , Produtos do Gene env/imunologia , Infecções por HIV/imunologia , Imunidade Inata/imunologia , Imunidade nas Mucosas/imunologia , Injeções Intramusculares/métodos , Macaca mulatta/virologia , Vacinas contra a SAIDS/imunologia , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Vacinação/métodos , Carga Viral
15.
Gene Ther ; 26(9): 399-406, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31467408

RESUMO

Differences between mouse and human hearts pose a significant limitation to the value of small animal models when predicting vector behavior following recombinant adeno-associated viral (rAAV) vector-mediated cardiac gene therapy. Hence, sheep have been adopted as a preclinical animal, as they better model the anatomy and cardiac physiological processes of humans. There is, however, no comprehensive data on the shedding profile of rAAV in sheep following intracoronary delivery, so as to understand biosafety risks in future preclinical and clinical applications. In this study, sheep received intracoronary delivery of rAAV serotypes 2/6 (2 × 1012 vg), 2/8, and 2/9 (1 × 1013 vg) at doses previously administered in preclinical and clinical trials. This was followed by assessment over 96 h to examine vector shedding in urine, feces, nasal mucus, and saliva samples. Vector genomes were detected via real-time quantitative PCR in urine and feces up to 48 and 72 h post vector delivery, respectively. Of these results, functional vector particles were only detected via a highly sensitive infectious replication assay in feces samples up to 48 h following vector delivery. We conclude that rAAV-mediated gene transfer into sheep hearts results in low-grade shedding of non-functional vector particles for all excreta samples, except in the case of feces, where functional vector particles are present up to 48 h following vector delivery. These results may be used to inform containment and decontamination guidelines for large animal dealings, and to understand the biosafety risks associated with future preclinical and clinical uses of rAAV.


Assuntos
Dependovirus/genética , Vetores Genéticos , Eliminação de Partículas Virais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Cateterismo , Vasos Coronários , Dependovirus/imunologia , Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Células HeLa , Humanos , Injeções Intra-Arteriais , Masculino , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/urina , Infecções por Parvoviridae/virologia , Reação em Cadeia da Polimerase em Tempo Real , Ovinos , Replicação Viral
16.
J Infect Dis ; 218(12): 1883-1889, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-29982595

RESUMO

Recent West African Ebola virus (EBOV) epidemics have led to testing different anti-EBOV vaccines, including a replication-defective adenovirus (RD-Ad) vector (ChAd3-EBOV) and an infectious, replication-competent recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (rVSV-EBOV; also known as rVSV-ZEBOV). While RD-Ads elicit protection, when scaled up to human trials, the level of protection may be much lower than that of vaccines containing viruses that can replicate. Although a replication-competent Ad (RC-Ad) vaccine might generate a level of protection approximating that of rVSV, this infectious vector would also risk causing adenovirus disease. We recently described a "single-cycle" adenovirus (SC-Ad) vector that amplifies antigen genes like RC-Ad, but that avoids the risk of adenovirus infection. Here we have tested an SC-Ad6 vector expressing the glycoprotein (GP) from a 2014 EBOV strain in mice, hamsters, and rhesus macaques. We show that SC-Ad6-EBOV GP induces a high level of serum antibodies in all species and mediates significant protection against pseudo-challenge with rVSV-EBOV expressing luciferase in mice and hamsters. These data suggest that SC-Ad6-EBOV GP may be useful during future EBOV outbreaks.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Células A549 , Adenoviridae , Envelhecimento , Animais , Chlorocebus aethiops , Cricetinae , Relação Dose-Resposta Imunológica , Vacinas contra Ebola/administração & dosagem , Ebolavirus/fisiologia , Ensaio de Imunoadsorção Enzimática , Feminino , Glicoproteínas/imunologia , Células HEK293 , Humanos , Esquemas de Imunização , Macaca mulatta , Mesocricetus , Camundongos , Vacinas Sintéticas/imunologia , Células Vero , Replicação Viral
17.
J Virol ; 91(2)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27807231

RESUMO

Head-to-head comparisons of conventional influenza vaccines with adenovirus (Ad) gene-based vaccines demonstrated that these viral vectors can mediate more potent protection against influenza virus infection in animal models. In most cases, Ad vaccines are engineered to be replication-defective (RD-Ad) vectors. In contrast, replication-competent Ad (RC-Ad) vaccines are markedly more potent but risk causing adenovirus diseases in vaccine recipients and health care workers. To harness antigen gene replication but avoid production of infectious virions, we developed "single-cycle" adenovirus (SC-Ad) vectors. Previous work demonstrated that SC-Ads amplify transgene expression 100-fold and produce markedly stronger and more persistent immune responses than RD-Ad vectors in Syrian hamsters and rhesus macaques. To test them as potential vaccines, we engineered RD and SC versions of adenovirus serotype 6 (Ad6) to express the hemagglutinin (HA) gene from influenza A/PR/8/34 virus. We show here that it takes approximately 33 times less SC-Ad6 than RD-Ad6 to produce equal amounts of HA antigen in vitro SC-Ad produced markedly higher HA binding and hemagglutination inhibition (HAI) titers than RD-Ad in Syrian hamsters. SC-Ad-vaccinated cotton rats had markedly lower influenza titers than RD-Ad-vaccinated animals after challenge with influenza A/PR/8/34 virus. These data suggest that SC-Ads may be more potent vaccine platforms than conventional RD-Ad vectors and may have utility as "needle-free" mucosal vaccines. IMPORTANCE: Most adenovirus vaccines that are being tested are replication-defective adenoviruses (RD-Ads). This work describes testing newer single-cycle adenovirus (SC-Ad) vectors that replicate transgenes to amplify protein production and immune responses. We show that SC-Ads generate markedly more influenza virus hemagglutinin protein and require substantially less vector to generate the same immune responses as RD-Ad vectors. SC-Ads therefore hold promise to be more potent vectors and vaccines than current RD-Ad vectors.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Replicação Viral , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , Linhagem Celular , Cricetinae , Replicação do DNA , DNA Complementar/genética , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Ratos , Proteínas Recombinantes de Fusão , Sigmodontinae
18.
Am J Physiol Renal Physiol ; 310(6): F466-76, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26672617

RESUMO

The arteriovenous fistula (AVF) is the preferred hemodialysis vascular access, but it is complicated by high failure rates and attendant morbidity. This study provides the first description of a murine AVF model that recapitulates two salient features of hemodialysis AVFs, namely, anastomosis of end-vein to side-artery to create the AVF and the presence of chronic kidney disease (CKD). CKD reduced AVF blood flow, observed as early as 3 days after AVF creation, and increased neointimal hyperplasia, venous wall thickness, thrombus formation, and vasculopathic gene expression in the AVF. These adverse effects of CKD could not be ascribed to preexisting alterations in blood pressure or vascular reactivity in this CKD model. In addition to vasculopathic genes, CKD induced potentially vasoprotective genes in the AVF such as heme oxygenase-1 (HO-1) and HO-2. To determine whether prior HO-1 upregulation may protect in this model, we upregulated HO-1 by adeno-associated viral gene delivery, achieving marked venous induction of the HO-1 protein and HO activity. Such HO-1 upregulation improved AVF blood flow and decreased venous wall thickness in the AVF. Finally, we demonstrate that the administration of carbon monoxide, a product of HO, acutely increased AVF blood flow. This study thus demonstrates: 1) the feasibility of a clinically relevant murine AVF model created in the presence of CKD and involving an end-vein to side-artery anastomosis; 2) the exacerbatory effect of CKD on clinically relevant features of this model; and 3) the beneficial effects in this model conferred by HO-1 upregulation by adeno-associated viral gene delivery.


Assuntos
Anemia Hemolítica/complicações , Derivação Arteriovenosa Cirúrgica , Terapia Genética , Transtornos do Crescimento/complicações , Heme Oxigenase-1/deficiência , Distúrbios do Metabolismo do Ferro/complicações , Complicações Pós-Operatórias/etiologia , Anemia Hemolítica/metabolismo , Anemia Hemolítica/terapia , Animais , Dependovirus , Estudos de Viabilidade , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/terapia , Heme Oxigenase-1/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/terapia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Compostos Organometálicos , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/terapia , Regulação para Cima
19.
Retrovirology ; 13: 30, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27117277

RESUMO

BACKGROUND: HIV reservoirs pose major challenges to viral eradication. The main cellular reservoirs include CD4 T cells and macrophages, whereas anatomic reservoirs are thought to be primarily lymphoid tissues. Adipose tissue represents a potentially important non-lymphoid location for HIV replication and persistence because the stromal-vascular-fraction (AT-SVF) contains activated innate and adaptive immune cells that increase in number during infections, obesity, and chronic inflammation. RESULTS: Adipose tissue from two groups of SHIV-SF162p3-infected (~4 weeks acute infection) or SIVmac251-infected (~38 weeks chronic infection) rhesus macaques (N = 8 for each group) were studied for immune cell content, viral infectiousness, and metabolic health. The AT-SVF cells from SHIV-infected monkeys contained abundant memory CD4 and CD8 T cells, with fewer NKT cells and macrophages, and no B cells. Proviral DNA (Gag and Env) was readily detectable by nested PCR in AT-SVF cells from multiple adipose depots (subcutaneous and visceral) of acutely infected monkeys, but mostly from visceral fat. More importantly, viral outgrowth assays using input CD4 T cells derived from AT-SVF cells or peripheral blood of chronically infected monkeys resulted in robust replication of infectious virus from both AT-SVF and peripheral blood CD4 T cells. Chronically infected monkeys also experienced adipocyte dysfunction (suppression of major adipogenic genes) and systemic dyslipidemia (decreased serum total cholesterol and free fatty acids, and increased triglycerides), similar to metabolic abnormalities of HIV patients. CONCLUSIONS: Adipose tissues of SIV-infected rhesus macaques become major compartments for infected immune cells, which in turn induce defects in adipose tissue metabolism.


Assuntos
Tecido Adiposo/virologia , Leucócitos Mononucleares/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Vírus da Imunodeficiência Símia/fisiologia , Animais , DNA Viral/análise , Feminino , Macaca mulatta , Masculino , Reação em Cadeia da Polimerase
20.
J Virol ; 89(1): 669-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25355873

RESUMO

UNLABELLED: Replication-competent adenoviral (RC-Ad) vectors generate exceptionally strong gene-based vaccine responses by amplifying the antigen transgenes they carry. While they are potent, they also risk causing adenovirus infections. More common replication-defective Ad (RD-Ad) vectors with deletions of E1 avoid this risk but do not replicate their transgene and generate markedly weaker vaccine responses. To amplify vaccine transgenes while avoiding production of infectious progeny viruses, we engineered "single-cycle" adenovirus (SC-Ad) vectors by deleting the gene for IIIa capsid cement protein of lower-seroprevalence adenovirus serotype 6. In mouse, human, hamster, and macaque cells, SC-Ad6 still replicated its genome but prevented genome packaging and virion maturation. When used for mucosal intranasal immunization of Syrian hamsters, both SC-Ad and RC-Ad expressed transgenes at levels hundreds of times higher than that of RD-Ad. Surprisingly, SC-Ad, but not RC-Ad, generated higher levels of transgene-specific antibody than RD-Ad, which notably climbed in serum and vaginal wash samples over 12 weeks after single mucosal immunization. When RD-Ad and SC-Ad were tested by single sublingual immunization in rhesus macaques, SC-Ad generated higher gamma interferon (IFN-γ) responses and higher transgene-specific serum antibody levels. These data suggest that SC-Ad vectors may have utility as mucosal vaccines. IMPORTANCE: This work illustrates the utility of our recently developed single-cycle adenovirus (SC-Ad6) vector as a new vaccine platform. Replication-defective (RD-Ad6) vectors produce low levels of transgene protein, which leads to minimal antibody responses in vivo. This study shows that replicating SC-Ad6 produces higher levels of luciferase and induces higher levels of green fluorescent protein (GFP)-specific antibodies than RD in a permissive Syrian hamster model. Surprisingly, although a replication-competent (RC-Ad6) vector produces more luciferase than SC-Ad6, it does not elicit comparable levels of anti-GFP antibodies in permissive hamsters. When tested in the larger rhesus macaque model, SC-Ad6 induces higher transgene-specific antibody and T cell responses. Together, these data suggest that SC-Ad6 could be a more effective platform for developing vaccines against more relevant antigens. This could be especially beneficial for developing vaccines for pathogens for which traditional replication-defective adenovirus vectors have not been effective.


Assuntos
Adenovírus Humanos/genética , Portadores de Fármacos/administração & dosagem , Vetores Genéticos , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Adenovírus Humanos/fisiologia , Administração Intranasal , Administração Sublingual , Animais , Anticorpos/análise , Anticorpos/sangue , Feminino , Imunidade nas Mucosas , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Macaca mulatta , Mesocricetus , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vagina/imunologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA