RESUMO
Spasticity attributable to exaggerated stretch reflex pathways, particularly affecting the ankle plantar flexors, often impairs overground walking in persons with incomplete spinal cord injury. Compelling evidence from rodent models underscores how exposure to acute intermittent hypoxia (AIH) can provide a unique medium to induce spinal plasticity in key inhibitory pathways mediating stretch reflex excitability and potentially affect spasticity. In this study, we quantify the effects of a single exposure to AIH on the stretch reflex in able-bodied individuals. We hypothesized that a single sequence of AIH will increase the stretch reflex excitability of the soleus muscle during ramp-and-hold angular perturbations applied to the ankle joint while participants perform passive and volitionally matched contractions. Our results revealed that a single AIH exposure did not significantly change the stretch reflex excitability during both passive and active matching conditions. Furthermore, we found that able-bodied individuals increased their stretch reflex response from passive to active matching conditions after both sham and AIH exposures. Together, these findings suggest that a single AIH exposure might not engage inhibitory pathways sufficiently to alter stretch reflex responses in able-bodied persons. However, the generalizability of our present findings requires further examination during repetitive exposures to AIH along with potential reflex modulation during functional movements, such as overground walking.
Assuntos
Músculo Esquelético , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Músculo Esquelético/fisiologia , Tornozelo , Articulação do Tornozelo , Hipóxia , EletromiografiaRESUMO
BACKGROUND: Restoring community walking remains a highly valued goal for persons recovering from traumatic incomplete spinal cord injury (SCI). Recently, studies report that brief episodes of low-oxygen breathing (acute intermittent hypoxia, AIH) may serve as an effective plasticity-inducing primer that enhances the effects of walking therapy in persons with chronic (> 1 year) SCI. More persistent walking recovery may occur following repetitive (weeks) AIH treatment involving persons with more acute SCI, but this possibility remains unknown. Here we present our clinical trial protocol, designed to examine the distinct influences of repetitive AIH, with and without walking practice, on walking recovery in persons with sub-acute SCI (< 12 months) SCI. Our overarching hypothesis is that daily exposure (10 sessions, 2 weeks) to AIH will enhance walking recovery in ambulatory and non-ambulatory persons with subacute (< 12 months) SCI, presumably by harnessing endogenous mechanisms of plasticity that occur soon after injury. METHODS: To test our hypothesis, we are conducting a randomized, placebo-controlled clinical trial on 85 study participants who we stratify into two groups according to walking ability; those unable to walk (non-ambulatory group) and those able to walk (ambulatory group). The non-ambulatory group receives either daily AIH (15, 90s episodes at 10.0% O2 with 60s intervals at 20.9% O2) or daily SHAM (15, 90s episodes at 20.9% O2 with 60s intervals at 20.9% O2) intervention. The ambulatory group receives either 60-min walking practice (WALK), daily AIH + WALK, or daily SHAM+WALK intervention. Our primary outcome measures assess overground walking speed (10-Meter Walk Test), endurance (6-Minute Walk Test), and balance (Timed Up & Go Test). For safety, we also measure levels of pain, spasticity, systemic hypertension, and autonomic dysreflexia. We record outcome measures at baseline, days 5 and 10, and follow-ups at 1 week, 1 month, 6 months, and 12 months post-treatment. DISCUSSION: The goal of this clinical trial is to reveal the extent to which daily AIH, alone or in combination with task-specific walking practice, safely promotes persistent recovery of walking in persons with traumatic, subacute SCI. Outcomes from this study may provide new insight into ways to enhance walking recovery in persons with SCI. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02632422 . Registered 16 December 2015.
Assuntos
Terapia por Exercício , Hipóxia , Traumatismos da Medula Espinal/fisiopatologia , Caminhada/fisiologia , Método Duplo-Cego , Humanos , Dor/etiologia , Recuperação de Função FisiológicaRESUMO
Brief episodes of low oxygen breathing (therapeutic acute intermittent hypoxia; tAIH) may serve as an effective plasticity-promoting primer to enhance the effects of transcutaneous spinal stimulation-enhanced walking therapy (WALKtSTIM) in persons with chronic (>1 year) spinal cord injury (SCI). Pre-clinical studies in rodents with SCI show that tAIH and WALKtSTIM therapies harness complementary mechanisms of plasticity to maximize walking recovery. Here, we present a multi-site clinical trial protocol designed to examine the influence of tAIH + WALKtSTIM on walking recovery in persons with chronic SCI. We hypothesize that daily (eight sessions, 2 weeks) tAIH + WALKtSTIM will elicit faster, more persistent improvements in walking recovery than either treatment alone. To test our hypothesis, we are conducting a placebo-controlled clinical trial on 60 SCI participants who randomly receive one of three interventions: tAIH + WALKtSTIM; Placebo + WALKtSTIM; and tAIH + WALKtSHAM. Participants receive daily tAIH (fifteen 90-sec episodes at 10% O2 with 60-sec intervals at 21% O2) or daily placebo (fifteen 90-sec episodes at 21% O2 with 60-sec intervals at 21% O2) before a 45-min session of WALKtSTIM or WALKtSHAM. Our primary outcome measures assess walking speed (10-Meter Walk Test), endurance (6-Minute Walk Test), and balance (Timed Up and Go Test). For safety, we also measure pain levels, spasticity, sleep behavior, cognition, and rates of systemic hypertension and autonomic dysreflexia. Assessments occur before, during, and after sessions, as well as at 1, 4, and 8 weeks post-intervention. Results from this study extend our understanding of the functional benefits of tAIH priming by investigating its capacity to boost the neuromodulatory effects of transcutaneous spinal stimulation on restoring walking after SCI. Given that there is no known cure for SCI and no single treatment is sufficient to overcome walking deficits, there is a critical need for combinatorial treatments that accelerate and anchor walking gains in persons with lifelong SCI. Trial Registration: ClinicalTrials.gov, NCT05563103.
RESUMO
Incomplete spinal cord injury (iSCI) often results in lifelong walking impairments that limit functional independence. Thus, treatments that trigger enduring improvement in walking after iSCI are in high demand. Breathing brief episodes of low oxygen (i.e., acute intermittent hypoxia, AIH) enhances breathing and walking function in rodents and humans with chronic iSCI. Pre-clinical studies found that AIH also causes the accumulation of extracellular adenosine that undermines AIH-induced functional plasticity. Pharmacologically blocking adenosine A2a receptors (A2aR) prior to AIH resulted in a dramatic improvement in motor facilitation in rodents with iSCI; however, a similar beneficial effect in humans is unclear. Thus, we conducted a double-blind, placebo-controlled, crossover randomized study to test the hypothesis that a non-selective A2aR antagonist (i.e., caffeine) enhances AIH-induced effects on walking function in people with chronic (≥1yr) iSCI. We enrolled 12 participants to receive daily (5 days) caffeine or placebo (4 mg/kg) 30 min before breathing 15, 1.5-min low oxygen (AIH; FIO2 = 0.10) or SHAM (FIO2 = 0.21) episodes with 1-min intervals. We quantified walking function as the change in the 10-meter walk test (speed) and 6-min walk test (endurance) relative to baseline, on Day 5 post-intervention, and on follow-up Days 12 and 19. Participants walked faster (Day 19; p < 0.001) and farther (Day 19; p = 0.012) after caffeine+AIH and the boost in speed persisted more than after placebo+AIH or caffeine+SHAM (Day 19; p < 0.05). These results support our hypothesis that a caffeine pre-treatment to AIH training shows promise as a strategy to augment walking speed in persons with chronic iSCI.
Assuntos
Cafeína , Traumatismos da Medula Espinal , Humanos , Cafeína/farmacologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Caminhada/fisiologia , Hipóxia , OxigênioRESUMO
PURPOSE OF REVIEW: The reacquisition and preservation of walking ability are highly valued goals in spinal cord injury (SCI) rehabilitation. Recurrent episodes of breathing low oxygen (i.e., acute intermittent hypoxia, AIH) is a potential therapy to promote walking recovery after incomplete SCI via endogenous mechanisms of neuroplasticity. Here, we report on the progress of AIH, alone or paired with other treatments, on walking recovery in persons with incomplete SCI. We evaluate the evidence of AIH as a therapy ready for clinical and home use and the real and perceived challenges that may interfere with this possibility. RECENT FINDINGS: Repetitive AIH is a safe and an efficacious treatment to enhance strength, walking speed and endurance, as well as, dynamic balance in persons with chronic, incomplete SCI. SUMMARY: The potential for AIH as a treatment for SCI remains high, but further research is necessary to understand treatment targets and effectiveness in a large cohort of persons with SCI.