Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Infect Dis ; 229(2): 507-516, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37787611

RESUMO

T-cell-based diagnostic tools identify pathogen exposure but lack differentiation between recent and historical exposures in acute infectious diseases. Here, T-cell receptor (TCR) RNA sequencing was performed on HLA-DR+/CD38+CD8+ T-cell subsets of hospitalized coronavirus disease 2019 (COVID-19) patients (n = 30) and healthy controls (n = 30; 10 of whom had previously been exposed to severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]). CDR3α and CDR3ß TCR regions were clustered separately before epitope specificity annotation using a database of SARS-CoV-2-associated CDR3α and CDR3ß sequences corresponding to >1000 SARS-CoV-2 epitopes. The depth of the SARS-CoV-2-associated CDR3α/ß sequences differentiated COVID-19 patients from the healthy controls with a receiver operating characteristic area under the curve of 0.84 ± 0.10. Hence, annotating TCR sequences of activated CD8+ T cells can be used to diagnose an acute viral infection and discriminate it from historical exposure. In essence, this work presents a new paradigm for applying the T-cell repertoire to accomplish TCR-based diagnostics.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , Receptores de Antígenos de Linfócitos T/genética , COVID-19/diagnóstico , SARS-CoV-2 , Subpopulações de Linfócitos T , Epitopos , Epitopos de Linfócito T , Teste para COVID-19
2.
J Infect Dis ; 230(3): 706-715, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-38195164

RESUMO

The varicella-zoster virus (VZV) infects >95% of the population. VZV reactivation causes herpes zoster (HZ), known as shingles, primarily affecting the elderly and individuals who are immunocompromised. However, HZ can occur in otherwise healthy individuals. We analyzed the immune signature and risk profile in patients with HZ using a genome-wide association study across different UK Biobank HZ cohorts. Additionally, we conducted one of the largest HZ human leukocyte antigen association studies to date, coupled with transcriptomic analysis of pathways underlying HZ susceptibility. Our findings highlight the significance of the major histocompatibility complex locus for HZ development, identifying 5 protective and 4 risk human leukocyte antigen alleles. This demonstrates that HZ susceptibility is largely governed by variations in the major histocompatibility complex. Furthermore, functional analyses revealed the upregulation of type I interferon and adaptive immune responses. These findings provide fresh molecular insights into the pathophysiology and activation of innate and adaptive immune responses triggered by symptomatic VZV reactivation.


Assuntos
Estudo de Associação Genômica Ampla , Antígenos HLA , Herpes Zoster , Herpesvirus Humano 3 , Humanos , Herpes Zoster/imunologia , Herpes Zoster/virologia , Herpesvirus Humano 3/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Idoso , Masculino , Pessoa de Meia-Idade , Predisposição Genética para Doença , Feminino , Imunidade Adaptativa , Reino Unido/epidemiologia , Adulto , Imunidade Inata
3.
Ann Hematol ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259326

RESUMO

The Wilms' tumor protein 1 (WT1) is a well-known and prioritized tumor-associated antigen expressed in numerous solid and blood tumors. Its abundance and immunogenicity have led to the development of different WT1-specific immune therapies. The driving player in these therapies, the WT1-specific T-cell receptor (TCR) repertoire, has received much less attention. Importantly, T cells with high affinity against the WT1 self-antigen are normally eliminated after negative selection in the thymus and are thus rare in peripheral blood. Here, we developed computational models for the robust and fast identification of WT1-specific TCRs from TCR repertoire data. To this end, WT137-45 (WT1-37) and WT1126-134 (WT1-126)-specific T cells were isolated from WT1 peptide-stimulated blood of healthy individuals. The TCR repertoire from these WT1-specific T cells was sequenced and used to train a pattern recognition model for the identification of WT1-specific TCR patterns for the WT1-37 or WT1-126 epitopes. The resulting computational models were applied on an independent published dataset from acute myeloid leukemia (AML) patients, treated with hematopoietic stem cell transplantation, to track WT1-specific TCRs in silico. Several WT1-specific TCRs were found in AML patients. Subsequent clustering analysis of all repertoires indicated the presence of more diverse TCR patterns within the WT1-specific TCR repertoires of AML patients in complete remission in contrast to relapsing patients. We demonstrate the possibility of tracking WT1-37 and WT1-126-specific TCRs directly from TCR repertoire data using computational methods, eliminating the need for additional blood samples and experiments for the two studied WT1 epitopes.

4.
Genes Immun ; 20(3): 255-260, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29904098

RESUMO

Pathogens of past and current infections have been identified directly by means of PCR or indirectly by measuring a specific immune response (e.g., antibody titration). Using a novel approach, Emerson and colleagues showed that the cytomegalovirus serostatus can also be accurately determined by using a T cell receptor repertoire data mining approach. In this study, we have sequenced the CD4+ memory T cell receptor repertoire of a Belgian cohort with known cytomegalovirus serostatus. A random forest classifier was trained on the CMV specific T cell receptor repertoire signature and used to classify individuals in the Belgian cohort. This study shows that the novel approach can be reliably replicated with an equivalent performance as that reported by Emerson and colleagues. Additionally, it provides evidence that the T cell receptor repertoire signature is to a large extent present in the CD4+ memory repertoire.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Mineração de Dados/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Testes Sorológicos/métodos , Adulto , Infecções por Citomegalovirus/sangue , Humanos , Memória Imunológica , Receptores de Antígenos de Linfócitos T/genética , Testes Sorológicos/normas
5.
J Transl Med ; 17(1): 282, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31443725

RESUMO

BACKGROUND: Meningitis can be caused by several viruses and bacteria. Identifying the causative pathogen as quickly as possible is crucial to initiate the most optimal therapy, as acute bacterial meningitis is associated with a significant morbidity and mortality. Bacterial meningitis requires antibiotics, as opposed to enteroviral meningitis, which only requires supportive therapy. Clinical presentation is usually not sufficient to differentiate between viral and bacterial meningitis, thereby necessitating cerebrospinal fluid (CSF) analysis by PCR and/or time-consuming bacterial cultures. However, collecting CSF in children is not always feasible and a rather invasive procedure. METHODS: In 12 Belgian hospitals, we obtained acute blood samples from children with signs of meningitis (49 viral and 7 bacterial cases) (aged between 3 months and 16 years). After pathogen confirmation on CSF, the patient was asked to give a convalescent sample after recovery. 3' mRNA sequencing was performed to determine differentially expressed genes (DEGs) to create a host transcriptomic profile. RESULTS: Enteroviral meningitis cases displayed the largest upregulated fold change enrichment in type I interferon production, response and signaling pathways. Patients with bacterial meningitis showed a significant upregulation of genes related to macrophage and neutrophil activation. We found several significantly DEGs between enteroviral and bacterial meningitis. Random forest classification showed that we were able to differentiate enteroviral from bacterial meningitis with an AUC of 0.982 on held-out samples. CONCLUSIONS: Enteroviral meningitis has an innate immunity signature with type 1 interferons as key players. Our classifier, based on blood host transcriptomic profiles of different meningitis cases, is a possible strong alternative for diagnosing enteroviral meningitis.


Assuntos
Infecções por Enterovirus/sangue , Infecções por Enterovirus/genética , Meningite Viral/diagnóstico , Meningite Viral/genética , Punção Espinal , Transcriptoma/genética , Adolescente , Criança , Pré-Escolar , Infecções por Enterovirus/diagnóstico , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Lactente , Meningites Bacterianas/genética , Meningite Viral/sangue , Curva ROC
6.
Immunogenetics ; 70(6): 363-372, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29196796

RESUMO

Around 30% of individuals will develop herpes zoster (HZ), caused by the varicella zoster virus (VZV), during their life. While several risk factors for HZ, such as immunosuppressive therapy, are well known, the genetic and molecular components that determine the risk of otherwise healthy individuals to develop HZ are still poorly understood. We created a computational model for the Human Leukocyte Antigen (HLA-A, -B, and -C) presentation capacity of peptides derived from the VZV Immediate Early 62 (IE62) protein. This model could then be applied to a HZ cohort with known HLA molecules. We found that HLA-A molecules with poor VZV IE62 presentation capabilities were more common in a cohort of 50 individuals with a history of HZ compared to a nationwide control group, which equated to a HZ risk increase of 60%. This tendency was most pronounced for cases of HZ at a young age, where other risk factors are less prevalent. These findings provide new molecular insights into the development of HZ and reveal a genetic predisposition in those individuals most at risk to develop HZ.


Assuntos
Antígenos HLA-A/imunologia , Herpes Zoster/imunologia , Herpesvirus Humano 3/imunologia , Proteínas Imediatamente Precoces/imunologia , Transativadores/imunologia , Proteínas do Envelope Viral/imunologia , Adulto , Idoso , Bélgica/epidemiologia , Varicela/imunologia , Varicela/virologia , Feminino , Predisposição Genética para Doença , Herpes Zoster/epidemiologia , Herpes Zoster/genética , Humanos , Proteínas Imediatamente Precoces/genética , Masculino , Pessoa de Meia-Idade , Modelos Imunológicos , Fatores de Risco , Transativadores/genética , Proteínas do Envelope Viral/genética
7.
Methods Cell Biol ; 183: 143-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38548410

RESUMO

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.


Assuntos
Leucócitos Mononucleares , Neoplasias , Humanos , Epitopos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T CD8-Positivos
8.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588339

RESUMO

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Assuntos
Herpes Zoster , Herpesvirus Humano 3 , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Humanos , Herpes Zoster/imunologia , Herpes Zoster/virologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Ativação Linfocitária/imunologia , Herpesvirus Humano 3/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Linfócitos T CD4-Positivos/imunologia , Idoso , Adulto , Epitopos de Linfócito T/imunologia
9.
Vaccines (Basel) ; 11(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37515051

RESUMO

The immune system acts as an intricate apparatus that is dedicated to mounting a defense and ensures host survival from microbial threats. To engage this faceted immune response and provide protection against infectious diseases, vaccinations are a critical tool to be developed. However, vaccine responses are governed by levels that, when interrogated, separately only explain a fraction of the immune reaction. To address this knowledge gap, we conducted a feasibility study to determine if multi-view modeling could aid in gaining actionable insights on response markers shared across populations, capture the immune system's diversity, and disentangle confounders. We thus sought to assess this multi-view modeling capacity on the responsiveness to the Hepatitis B virus (HBV) vaccination. Seroconversion to vaccine-induced antibodies against the HBV surface antigen (anti-HBs) in early converters (n = 21; <2 months) and late converters (n = 9; <6 months) and was defined based on the anti-HBs titers (>10IU/L). The multi-view data encompassed bulk RNA-seq, CD4+ T-cell parameters (including T-cell receptor data), flow cytometry data, and clinical metadata (including age and gender). The modeling included testing single-view and multi-view joint dimensionality reductions. Multi-view joint dimensionality reduction outperformed single-view methods in terms of the area under the curve and balanced accuracy, confirming the increase in predictive power to be gained. The interpretation of these findings showed that age, gender, inflammation-related gene sets, and pre-existing vaccine-specific T-cells could be associated with vaccination responsiveness. This multi-view dimensionality reduction approach complements clinical seroconversion and all single modalities. Importantly, this modeling could identify what features could predict HBV vaccine response. This methodology could be extended to other vaccination trials to identify the key features regulating responsiveness.

10.
Front Immunol ; 14: 1130876, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325653

RESUMO

Despite the general agreement on the significance of T cells during SARS-CoV-2 infection, the clinical impact of specific and cross-reactive T-cell responses remains uncertain. Understanding this aspect could provide insights for adjusting vaccines and maintaining robust long-term protection against continuously emerging variants. To characterize CD8+ T-cell response to SARS-CoV-2 epitopes unique to the virus (SC2-unique) or shared with other coronaviruses (CoV-common), we trained a large number of T-cell receptor (TCR) - epitope recognition models for MHC-I-presented SARS-CoV-2 epitopes from publicly available data. These models were then applied to longitudinal CD8+ TCR repertoires from critical and non-critical COVID-19 patients. In spite of comparable initial CoV-common TCR repertoire depth and CD8+ T-cell depletion, the temporal dynamics of SC2-unique TCRs differed depending on the disease severity. Specifically, while non-critical patients demonstrated a large and diverse SC2-unique TCR repertoire by the second week of the disease, critical patients did not. Furthermore, only non-critical patients exhibited redundancy in the CD8+ T-cell response to both groups of epitopes, SC2-unique and CoV-common. These findings indicate a valuable contribution of the SC2-unique CD8+ TCR repertoires. Therefore, a combination of specific and cross-reactive CD8+ T-cell responses may offer a stronger clinical advantage. Besides tracking the specific and cross-reactive SARS-CoV-2 CD8+ T cells in any TCR repertoire, our analytical framework can be expanded to more epitopes and assist in the assessment and monitoring of CD8+ T-cell response to other infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Epitopos de Linfócito T , Receptores de Antígenos de Linfócitos T , Linfócitos T CD8-Positivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA