Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Development ; 149(21)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281807

RESUMO

Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Arabidopsis/metabolismo , Plântula/genética , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Plant J ; 116(3): 855-870, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37548081

RESUMO

Plant cells and organs grow into a remarkable diversity of shapes, as directed by cell walls composed primarily of polysaccharides such as cellulose and multiple structurally distinct pectins. The properties of the cell wall that allow for precise control of morphogenesis are distinct from those of the individual polysaccharide components. For example, cellulose, the primary determinant of cell morphology, is a chiral macromolecule that can self-assemble in vitro into larger-scale structures of consistent chirality, and yet most plant cells do not display consistent chirality in their growth. One interesting exception is the Arabidopsis thaliana rhm1 mutant, which has decreased levels of the pectin rhamnogalacturonan-I and causes conical petal epidermal cells to grow with a left-handed helical twist. Here, we show that in rhm1 the cellulose is bundled into large macrofibrils, unlike the evenly distributed microfibrils of the wild type. This cellulose bundling becomes increasingly severe over time, consistent with cellulose being synthesized normally and then self-associating into macrofibrils. We also show that in the wild type, cellulose is oriented transversely, whereas in rhm1 mutants, the cellulose forms right-handed helices that can account for the helical morphology of the petal cells. Our results indicate that when the composition of pectin is altered, cellulose can form cellular-scale chiral structures in vivo, analogous to the helicoids formed in vitro by cellulose nano-crystals. We propose that an important emergent property of the interplay between rhamnogalacturonan-I and cellulose is to permit the assembly of nonbundled cellulose structures, providing plants flexibility to orient cellulose and direct morphogenesis.


Assuntos
Arabidopsis , Celulose , Celulose/metabolismo , Lateralidade Funcional , Ramnogalacturonanos/análise , Ramnogalacturonanos/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Parede Celular/metabolismo
3.
New Phytol ; 239(5): 1723-1739, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421201

RESUMO

Here, we discover a player in root development. Recovered from a forward-genetic screen in Brachypodium distachyon, the buzz mutant initiates root hairs but they fail to elongate. In addition, buzz roots grow twice as fast as wild-type roots. Also, lateral roots show increased sensitivity to nitrate, whereas primary roots are less sensitive to nitrate. Using whole-genome resequencing, we identified the causal single nucleotide polymorphism as occurring in a conserved but previously uncharacterized cyclin-dependent kinase (CDK)-like gene. The buzz mutant phenotypes are rescued by the wild-type B. distachyon BUZZ coding sequence and by an apparent homolog in Arabidopsis thaliana. Moreover, T-DNA mutants in A. thaliana BUZZ have shorter root hairs. BUZZ mRNA localizes to epidermal cells and develops root hairs and, in the latter, partially colocalizes with the NRT1.1A nitrate transporter. Based on qPCR and RNA-Seq, buzz overexpresses ROOT HAIRLESS LIKE SIX-1 and -2 and misregulates genes related to hormone signaling, RNA processing, cytoskeletal, and cell wall organization, and to the assimilation of nitrate. Overall, these data demonstrate that BUZZ is required for tip growth after root hair initiation and root architectural responses to nitrate.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/metabolismo , Nitratos/metabolismo , Genes Essenciais , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Physiol Plant ; 174(2): e13682, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35373370

RESUMO

Growing at either 15 or 25°C, roots of Arabidopsis thaliana, Columbia accession, produce cells at the same rate and have growth zones of the same length. To determine whether this constancy is related to energetics, we measured oxygen uptake by means of a vibrating oxygen-selective electrode. Concomitantly, the spatial distribution of elongation was measured kinematically, delineating meristem and elongation zone. All seedlings were germinated, grown, and measured at a given temperature (15 or 25°C). Columbia was compared to lines where cell production rate roughly doubles between 15 and 25°C: Landsberg and two Columbia mutants, er-105 and ahk3-3. For all genotypes and temperatures, oxygen uptake rate at any position was highest at the root cap, where mitochondrial density was maximal, based on the fluorescence of a reporter. Uptake rate declined through the meristem to plateau within the elongation zone. For oxygen uptake rate integrated over a zone, the meristem had steady-state Q10 values ranging from 0.7 to 2.1; by contrast, the elongation zone had values ranging from 2.6 to 3.3, implying that this zone exerts a greater respiratory demand. These results highlight a substantial energy consumption by the root cap, perhaps helpful for maintaining hypoxia in stem cells, and suggest that rapid elongation is metabolically more costly than is cell division.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Meristema , Oxigênio , Raízes de Plantas , Temperatura
6.
J Cell Sci ; 128(14): 2553-64, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26045445

RESUMO

In plants, the ROP family of small GTPases has been implicated in the polarized growth of tip-growing cells, such as root hairs and pollen tubes; however, most of the data derive from overexpressing ROP genes or constitutively active and dominant-negative isoforms, whereas confirmation by using loss-of-function studies has generally been lacking. Here, in the model moss Physcomitrella patens, we study ROP signaling during tip growth by using a loss-of-function approach based on RNA interference (RNAi) to silence the entire moss ROP family. We find that plants with reduced expression of ROP genes, in addition to failing to initiate tip growth, have perturbed cell wall staining, reduced cell adhesion and have increased actin-filament dynamics. Although plants subjected to RNAi against the ROP family also have reduced microtubule dynamics, this reduction is not specific to loss of ROP genes, as it occurs when actin function is compromised chemically or genetically. Our data suggest that ROP proteins polarize the actin cytoskeleton by suppressing actin-filament dynamics, leading to an increase in actin filaments at the site of polarized secretion.


Assuntos
Actinas/metabolismo , Bryopsida/enzimologia , Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/fisiologia , Actinas/genética , Bryopsida/genética , Adesão Celular/fisiologia , Citoesqueleto/genética , GTP Fosfo-Hidrolases/genética , Proteínas de Plantas/genética
7.
Plant Cell Environ ; 40(2): 264-276, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27813107

RESUMO

To understand how root growth responds to temperature, we used kinematic analysis to quantify division and expansion parameters in the root of Arabidopsis thaliana. Plants were grown at temperatures from 15 to 30 °C, given continuously from germination. Over these temperatures, root length varies more than threefold in the wild type but by only twofold in a double mutant for phytochrome-interacting factor 4 and 5. For kinematics, the spatial profile of velocity was obtained with new software, Stripflow. We find that 30 °C truncates the elongation zone and curtails cell production, responses that probably reflect the elicitation of a common pathway for handling severe stresses. Curiously, rates of cell division at all temperatures are closely correlated with rates of radial expansion. Between 15 to 25 °C, root growth rate, maximal elemental elongation rate, and final cell length scale positively with temperature whereas the length of the meristem scales negatively. Non-linear temperature scaling characterizes meristem cell number, time to transit through either meristem or elongation zone, and average cell division rate. Surprisingly, the length of the elongation zone and the total rate of cell production are temperature invariant, constancies that have implications for our understanding of how the underlying cellular processes are integrated.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Temperatura , Arabidopsis/fisiologia , Divisão Celular , Raízes de Plantas/fisiologia , Software , Fatores de Tempo
8.
Plant Physiol ; 167(3): 780-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25646318

RESUMO

The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Celulose/metabolismo , Técnicas de Inativação de Genes , Glucosiltransferases/metabolismo , Lignina/metabolismo , Mutação , Oryza/metabolismo , Pectinas/metabolismo , Fenótipo , Transporte Proteico , Xilema/citologia
9.
New Phytol ; 204(3): 536-544, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25039492

RESUMO

The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants. Radiolabeled auxin uptake was measured in protoplasts isolated from roots of Arabidopsis thaliana. This was done for the wild-type, under treatments with additional unlabeled auxin to saturate the influx carriers, and for the influx carrier mutant auxin resistant 1 (aux1). We also used flow cytometry to quantify the relative abundance of cells expressing AUX1-YFP in the assayed population. At pH 5.7, the majority of auxin influx into protoplasts - 75% - was mediated by the influx carrier AUX1. An additional 20% was mediated by other saturable carriers. The diffusive influx of auxin was essentially negligible at pH 5.7. The influx of auxin mediated by AUX1, expressed as a membrane permeability, was 1.5 ± 0.3 µm s(-1) . This value is comparable in magnitude to estimates of efflux permeability. Thus, auxin-transporting tissues can sustain relatively high auxin efflux and yet not become depleted of auxin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/metabolismo , Protoplastos/metabolismo , Proteínas de Arabidopsis/genética , Concentração de Íons de Hidrogênio , Permeabilidade , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo
10.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38712306

RESUMO

Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the three-dimensional orientations and diffraction-limited positions of ensembles of fluorescent dipoles that label biological structures, and we share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model our samples, their excitation, and their detection using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labelled giant unilamellar vesicles, fast-scarlet-labelled cellulose in xylem cells, and phalloidin-labelled actin in U2OS cells. Additionally, we observe phalloidin-labelled actin in mouse fibroblasts grown on grids of labelled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales.

11.
Trends Plant Sci ; 29(1): 20-31, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37735061

RESUMO

There are growing doubts about the true role of the common mycorrhizal networks (CMN or wood wide web) connecting the roots of trees in forests. We question the claims of a substantial carbon transfer from 'mother trees' to their offspring and nearby seedlings through the CMN. Recent reviews show that evidence for the 'mother tree concept' is inconclusive or absent. The origin of this concept seems to stem from a desire to humanize plant life but can lead to misunderstandings and false interpretations and may eventually harm rather than help the commendable cause of preserving forests. Two recent books serve as examples: The Hidden Life of Trees and Finding the Mother Tree.


Assuntos
Micorrizas , Árvores , Humanos , Florestas , Fungos , Raízes de Plantas/microbiologia , Plantas , Solo
12.
Development ; 137(6): 953-61, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20150278

RESUMO

The caspase family protease, separase, is required at anaphase onset to cleave the cohesin complex, which joins sister chromatids. However, among eukaryotes, separases have acquired novel functions. Here, we show that Arabidopsis thaliana radially swollen 4 (rsw4), a temperature-sensitive mutant isolated previously on the basis of root swelling, harbors a mutation in At4g22970, the A. thaliana separase. Loss of separase function in rsw4 at the restrictive temperature is indicated by the widespread failure of replicated chromosomes to disjoin. Surprisingly, rsw4 has neither pronounced cell cycle arrest nor anomalous spindle formation, which occur in other eukaryotes upon loss of separase activity. However, rsw4 roots have disorganized cortical microtubules and accumulate the mitosis-specific cyclin, cyclin B1;1, excessive levels of which have been associated with altered microtubules and morphology. Cyclin B1;1 also accumulates in certain backgrounds in response to DNA damage, but we find no evidence for aberrant responses to DNA damage in rsw4. Our characterization of rsw4 leads us to hypothesize that plant separase, in addition to cleaving cohesin, regulates cyclin B1;1, with profound ramifications for morphogenesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Endopeptidases/genética , Morfogênese/genética , Não Disjunção Genética/genética , Fatores de Transcrição/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Plantas/genética , Clonagem Molecular , Ciclina B/genética , Ciclina B/metabolismo , Endopeptidases/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação/fisiologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Separase , Temperatura , Fatores de Transcrição/genética , Coesinas
13.
BMC Plant Biol ; 13: 131, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24024469

RESUMO

BACKGROUND: Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls. RESULTS: Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall. CONCLUSION: These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.


Assuntos
Brachypodium/enzimologia , Brachypodium/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo
14.
J Exp Bot ; 64(15): 4697-707, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913952

RESUMO

We review the role of anisotropic stress in controlling the growth anisotropy of stems. Instead of stress, growth anisotropy is usually considered in terms of compliance. Anisotropic compliance is typical of cell walls, because they contain aligned cellulose microfibrils, and it appears to be sufficient to explain the growth anisotropy of an isolated cell. Nevertheless, a role for anisotropic stress in the growth of stems is indicated by certain growth responses that appear too rapid to be accounted for by changes in cell-wall compliance and because the outer epidermal wall of most growing stems has microfibrils aligned axially, an arrangement that would favour radial expansion based on cell-wall compliance alone. Efforts to quantify stress anisotropy in the stem have found that it is predominantly axial, and large enough in principle to explain the elongation of the epidermis, despite its axial microfibrils. That the epidermis experiences a stress deriving from the inner tissue, the so-called 'tissue stress', has been widely recognized; however, the origin of the dominant axial direction remains obscure. Based on geometry, an isolated cylindrical cell should have an intramural stress anisotropy favouring the transverse direction. Explanations for tissue stress have invoked differential elastic moduli, differential plastic deformation (so-called differential growth), and a phenomenon analogous to the maturation stress generated by secondary cell walls. None of these explanations has been validated. We suggest that understanding the role of stress anisotropy in plant growth requires a deeper understanding of the nature of stress in hierarchical, organic structures.


Assuntos
Parede Celular/fisiologia , Glycine max/fisiologia , Pisum sativum/fisiologia , Caules de Planta/fisiologia , Anisotropia , Fenômenos Biomecânicos , Parede Celular/ultraestrutura , Celulose/análise , Mecanotransdução Celular , Microfibrilas , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/ultraestrutura , Caules de Planta/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Glycine max/ultraestrutura , Estresse Mecânico
15.
Plant Cell ; 22(6): 1762-76, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20562236

RESUMO

In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Gravitropismo , Meristema/fisiologia , Raízes de Plantas/fisiologia , Proteína Fosfatase 2/metabolismo , Transporte Biológico , Brefeldina A/farmacologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ácidos Indolacéticos/metabolismo
16.
Proc Natl Acad Sci U S A ; 107(29): 12866-71, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20616083

RESUMO

Cellulose synthase-interactive protein 1 (CSI1) was identified in a two-hybrid screen for proteins that interact with cellulose synthase (CESA) isoforms involved in primary plant cell wall synthesis. CSI1 encodes a 2,150-amino acid protein that contains 10 predicted Armadillo repeats and a C2 domain. Mutations in CSI1 cause defective cell elongation in hypocotyls and roots and reduce cellulose content. CSI1 is associated with CESA complexes, and csi1 mutants affect the distribution and movement of CESA complexes in the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Celulose/biossíntese , Glucosiltransferases/metabolismo , Arabidopsis/citologia , Proteínas de Arabidopsis/química , Proteínas de Transporte/química , Proliferação de Células , Hipocótilo/crescimento & desenvolvimento , Microfibrilas/metabolismo , Mutação/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos
17.
Plant Cell Physiol ; 53(4): 699-708, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22383625

RESUMO

Organelle motility, essential for cellular function, is driven by the cytoskeleton. In plants, actin filaments sustain the long-distance transport of many types of organelles, and microtubules typically fine-tune the motile behavior. In shoot epidermal cells of Arabidopsis thaliana seedlings, we show here that a type of RNA granule, the RNA processing body (P-body), is transported by actin filaments and pauses at cortical microtubules. Interestingly, removal of microtubules does not change the frequency of P-body pausing. Similarly, we show that Golgi bodies, peroxisomes, and mitochondria all pause at microtubules, and again the frequency of pauses is not appreciably changed after microtubules are depolymerized. To understand the basis for pausing, we examined the endoplasmic reticulum (ER), whose overall architecture depends on actin filaments. By the dual observation of ER and microtubules, we find that stable junctions of tubular ER occur mainly at microtubules. Removal of microtubules reduces the number of stable ER tubule junctions, but those remaining are maintained without microtubules. The results indicate that pausing on microtubules is a common attribute of motile organelles but that microtubules are not required for pausing. We suggest that pausing on microtubules facilitates interactions between the ER and otherwise translocating organelles in the cell cortex.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Citoesqueleto de Actina/metabolismo , RNA de Plantas/genética
18.
Plant Physiol ; 155(4): 1817-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21325566

RESUMO

Plasmodesmata permit solutes to move between cells nonspecifically and without having to cross a membrane. This symplastic connectivity, while straightforward to observe using fluorescent tracers, has proven difficult to quantify. We use fluorescence recovery after photobleaching, combined with a mathematical model of symplastic diffusion, to assay plasmodesmata-mediated permeability in the Arabidopsis (Arabidopsis thaliana) root meristem in wild-type and transgenic lines, and under selected chemical treatments. The permeability measured for the wild type is nearly 10-times greater than previously reported. Plamodesmal permeability remains constant in seedlings treated with auxin (30 mM indoleacetic acid for 2 and 24 h; 100 nm indoleacetic acid for 2 h); however, permeability is diminished in two lines previously reported to have impaired plasmodesmal function as well as in wild-type seedlings treated for 24 h with 0.6 mM tryptophan. Moreover, plasmodesmal permeability is strongly altered by applied hydrogen peroxide within 2 h of treatment, being approximately doubled at a low concentration (0.6 mM) and nearly eliminated at a higher one (6 mM). These results reveal that the plasmodesmata in the root meristem carry a substantial flux of small molecules and that this flux is subject to rapid regulation.


Assuntos
Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/metabolismo , Fluoresceínas/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Peróxido de Hidrogênio/farmacologia , Modelos Teóricos , Permeabilidade , Plantas Geneticamente Modificadas/metabolismo , Triptofano/metabolismo
19.
Nat Cell Biol ; 7(10): 961-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16138083

RESUMO

Despite the absence of a conspicuous microtubule-organizing centre, microtubules in plant cells at interphase are present in the cell cortex as a well oriented array. A recent report suggests that microtubule nucleation sites for the array are capable of associating with and dissociating from the cortex. Here, we show that nucleation requires extant cortical microtubules, onto which cytosolic gamma-tubulin is recruited. In both living cells and the cell-free system, microtubules are nucleated as branches on the extant cortical microtubules. The branch points contain gamma-tubulin, which is abundant in the cytoplasm, and microtubule nucleation in the cell-free system is prevented by inhibiting gamma-tubulin function with a specific antibody. When isolated plasma membrane with microtubules is exposed to purified neuro-tubulin, no microtubules are nucleated. However, when the membrane is exposed to a cytosolic extract, gamma-tubulin binds microtubules on the membrane, and after a subsequent incubation in neuro-tubulin, microtubules are nucleated on the pre-existing microtubules. We propose that a cytoplasmic gamma-tubulin complex shuttles between the cytoplasm and the side of a cortical microtubule, and has nucleation activity only when bound to the microtubule.


Assuntos
Microtúbulos/metabolismo , Nicotiana/metabolismo , Tubulina (Proteína)/metabolismo , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Microtúbulos/ultraestrutura , Modelos Biológicos , Nicotiana/citologia , Nicotiana/ultraestrutura
20.
PeerJ ; 10: e14315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340204

RESUMO

The plant hormones ethylene and cytokinin influence many processes; sometimes they act cooperatively, other times antagonistically. To study their antagonistic interaction, we used the cotyledons of etiolated, intact seedlings of Arabidopsis thaliana. We focused on cell division and expansion, because both processes are quantified readily in paradermal sections. Here, we show that exogenous cytokinins modestly stimulate cell division and expansion in the cotyledon, with a phenyl-urea class compound exerting a larger effect than benzyl-adenine. Similarly, both processes were stimulated modestly when ethylene response was inhibited, either chemically with silver nitrate or genetically with the eti5 ethylene-insensitive mutant. However, combining cytokinin treatment with ethylene insensitivity was synergistic, strongly stimulating both cell division and expansion. Evidently, ethylene represses the growth promoting influence of cytokinin, whether endogenous or applied. We suggest that the intact etiolated cotyledon offers a useful system to characterize how ethylene antagonizes cytokinin responsiveness.


Assuntos
Arabidopsis , Citocininas , Citocininas/farmacologia , Arabidopsis/genética , Cotilédone , Plântula/genética , Etilenos/farmacologia , Divisão Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA