Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(41): 22305-22309, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37695261

RESUMO

Cytochrome c oxidase (CcO) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, CcO has a unique binuclear center (BNC) composed of a copper atom (CuB) and a heme a3 iron, where O2 binds and is reduced to water. CO is a versatile O2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine CcO (bCcO) revealed that photolyzing CO from the heme a3 iron leads to a metastable intermediate (CuB-CO), where CO is bound to CuB, before it escapes out of the BNC. Here, with a pump-probe based time-resolved serial femtosecond X-ray crystallography, we detected a geminate photoproduct of the bCcO-CO complex, where CO is dissociated from the heme a3 iron and moved to a temporary binding site midway between the CuB and the heme a3 iron, while the locations of the two metal centers and the conformation of Helix-X, housing the proximal histidine ligand of the heme a3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bCcO, allows for a clearer definition of the ligand dissociation trajectory as well as the associated protein dynamics.


Assuntos
Cobre , Complexo IV da Cadeia de Transporte de Elétrons , Bovinos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredução , Cobre/química , Ligantes , Oxigênio/química , Cristalografia por Raios X , Ferro/química , Água/metabolismo
2.
PLoS Biol ; 18(7): e3000755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32644996

RESUMO

Kindlin-1, -2, and -3 directly bind integrin ß cytoplasmic tails to regulate integrin activation and signaling. Despite their functional significance and links to several diseases, structural information on full-length kindlin proteins remains unknown. Here, we report the crystal structure of human full-length kindlin-3, which reveals a novel homotrimer state. Unlike kindlin-3 monomer, which is the major population in insect and mammalian cell expression systems, kindlin-3 trimer does not bind integrin ß cytoplasmic tail as the integrin-binding pocket in the F3 subdomain of 1 protomer is occluded by the pleckstrin homology (PH) domain of another protomer, suggesting that kindlin-3 is auto-inhibited upon trimer formation. This is also supported by functional assays in which kindlin-3 knockout K562 erythroleukemia cells reconstituted with the mutant kindlin-3 containing trimer-disrupting mutations exhibited an increase in integrin-mediated adhesion and spreading on fibronectin compared with those reconstituted with wild-type kindlin-3. Taken together, our findings reveal a novel mechanism of kindlin auto-inhibition that involves its homotrimer formation.


Assuntos
Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Multimerização Proteica , Movimento Celular , Humanos , Integrinas/metabolismo , Células K562 , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
4.
J Synchrotron Radiat ; 29(Pt 2): 581-590, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254323

RESUMO

ID23-2 is a fixed-energy (14.2 keV) microfocus beamline at the European Synchrotron Radiation Facility (ESRF) dedicated to macromolecular crystallography. The optics and sample environment have recently been redesigned and rebuilt to take full advantage of the upgrade of the ESRF to the fourth generation Extremely Brilliant Source (ESRF-EBS). The upgraded beamline now makes use of two sets of compound refractive lenses and multilayer mirrors to obtain a highly intense (>1013 photons s-1) focused microbeam (minimum size 1.5 µm × 3 µm full width at half-maximum). The sample environment now includes a FLEX-HCD sample changer/storage system, as well as a state-of-the-art MD3Up high-precision multi-axis diffractometer. Automatic data reduction and analysis are also provided for more advanced protocols such as synchrotron serial crystallographic experiments.


Assuntos
Lentes , Síncrotrons , Cristalografia por Raios X , Coleta de Dados , Substâncias Macromoleculares/química
5.
Nature ; 530(7589): 202-6, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863980

RESUMO

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Assuntos
Cristalografia por Raios X/métodos , Complexo de Proteína do Fotossistema II/química , Cristalização , Modelos Moleculares
6.
Angew Chem Int Ed Engl ; 61(2): e202109967, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34668624

RESUMO

Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.


Assuntos
Ceramidases
7.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200343

RESUMO

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Assuntos
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Lasers , Camundongos , Modelos Moleculares , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Transdução de Sinais , Raios X
8.
Nature ; 513(7517): 261-5, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25043005

RESUMO

Photosynthesis, a process catalysed by plants, algae and cyanobacteria converts sunlight to energy thus sustaining all higher life on Earth. Two large membrane protein complexes, photosystem I and II (PSI and PSII), act in series to catalyse the light-driven reactions in photosynthesis. PSII catalyses the light-driven water splitting process, which maintains the Earth's oxygenic atmosphere. In this process, the oxygen-evolving complex (OEC) of PSII cycles through five states, S0 to S4, in which four electrons are sequentially extracted from the OEC in four light-driven charge-separation events. Here we describe time resolved experiments on PSII nano/microcrystals from Thermosynechococcus elongatus performed with the recently developed technique of serial femtosecond crystallography. Structures have been determined from PSII in the dark S1 state and after double laser excitation (putative S3 state) at 5 and 5.5 Å resolution, respectively. The results provide evidence that PSII undergoes significant conformational changes at the electron acceptor side and at the Mn4CaO5 core of the OEC. These include an elongation of the metal cluster, accompanied by changes in the protein environment, which could allow for binding of the second substrate water molecule between the more distant protruding Mn (referred to as the 'dangler' Mn) and the Mn3CaOx cubane in the S2 to S3 transition, as predicted by spectroscopic and computational studies. This work shows the great potential for time-resolved serial femtosecond crystallography for investigation of catalytic processes in biomolecules.


Assuntos
Cristalografia por Raios X , Cianobactérias/química , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Estrutura Terciária de Proteína
9.
Proc Natl Acad Sci U S A ; 114(31): 8223-8228, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716900

RESUMO

Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs. Here we present the 3.0-Å resolution structure of a complex between the human 5-hydroxytryptamine 2B (5-HT2B) receptor and an antibody Fab fragment bound to the extracellular side of the receptor, determined by serial femtosecond crystallography with an X-ray free-electron laser. The antibody binds to a 3D epitope of the receptor that includes all three extracellular loops. The 5-HT2B receptor is captured in a well-defined active-like state, most likely stabilized by the crystal lattice. The structure of the complex sheds light on the mechanism of selectivity in extracellular recognition of GPCRs by monoclonal antibodies.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Receptor 5-HT2B de Serotonina/química , Receptor 5-HT2B de Serotonina/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Ergotamina/química , Ergotamina/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Conformação Proteica , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/química , Agonistas do Receptor de Serotonina/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(30): 8011-8016, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28698372

RESUMO

Cytochrome c oxidase (CcO), the terminal enzyme in the electron transfer chain, translocates protons across the inner mitochondrial membrane by harnessing the free energy generated by the reduction of oxygen to water. Several redox-coupled proton translocation mechanisms have been proposed, but they lack confirmation, in part from the absence of reliable structural information due to radiation damage artifacts caused by the intense synchrotron radiation. Here we report the room temperature, neutral pH (6.8), damage-free structure of bovine CcO (bCcO) in the carbon monoxide (CO)-bound state at a resolution of 2.3 Å, obtained by serial femtosecond X-ray crystallography (SFX) with an X-ray free electron laser. As a comparison, an equivalent structure was obtained at a resolution of 1.95 Å, from data collected at a synchrotron light source. In the SFX structure, the CO is coordinated to the heme a3 iron atom, with a bent Fe-C-O angle of ∼142°. In contrast, in the synchrotron structure, the Fe-CO bond is cleaved; CO relocates to a new site near CuB, which, in turn, moves closer to the heme a3 iron by ∼0.38 Å. Structural comparison reveals that ligand binding to the heme a3 iron in the SFX structure is associated with an allosteric structural transition, involving partial unwinding of the helix-X between heme a and a3, thereby establishing a communication linkage between the two heme groups, setting the stage for proton translocation during the ensuing redox chemistry.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Monóxido de Carbono/metabolismo , Bovinos , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/química , Conformação Proteica
11.
Proc Natl Acad Sci U S A ; 114(9): 2247-2252, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202732

RESUMO

To understand how molecules function in biological systems, new methods are required to obtain atomic resolution structures from biological material under physiological conditions. Intense femtosecond-duration pulses from X-ray free-electron lasers (XFELs) can outrun most damage processes, vastly increasing the tolerable dose before the specimen is destroyed. This in turn allows structure determination from crystals much smaller and more radiation sensitive than previously considered possible, allowing data collection from room temperature structures and avoiding structural changes due to cooling. Regardless, high-resolution structures obtained from XFEL data mostly use crystals far larger than 1 µm3 in volume, whereas the X-ray beam is often attenuated to protect the detector from damage caused by intense Bragg spots. Here, we describe the 2 Å resolution structure of native nanocrystalline granulovirus occlusion bodies (OBs) that are less than 0.016 µm3 in volume using the full power of the Linac Coherent Light Source (LCLS) and a dose up to 1.3 GGy per crystal. The crystalline shell of granulovirus OBs consists, on average, of about 9,000 unit cells, representing the smallest protein crystals to yield a high-resolution structure by X-ray crystallography to date. The XFEL structure shows little to no evidence of radiation damage and is more complete than a model determined using synchrotron data from recombinantly produced, much larger, cryocooled granulovirus granulin microcrystals. Our measurements suggest that it should be possible, under ideal experimental conditions, to obtain data from protein crystals with only 100 unit cells in volume using currently available XFELs and suggest that single-molecule imaging of individual biomolecules could almost be within reach.


Assuntos
Cristalografia/métodos , Elétrons , Granulovirus/ultraestrutura , Peptídeos e Proteínas de Sinalização Intercelular/química , Lasers , Cristalografia/instrumentação , Granulovirus/química , Modelos Moleculares , Progranulinas , Estrutura Secundária de Proteína , Síncrotrons
12.
J Synchrotron Radiat ; 26(Pt 1): 244-252, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655492

RESUMO

At the Swiss Light Source macromolecular crystallography (MX) beamlines the collection of serial synchrotron crystallography (SSX) diffraction data is facilitated by the recent DA+ data acquisition and analysis software developments. The SSX suite allows easy, efficient and high-throughput measurements on a large number of crystals. The fast continuous diffraction-based two-dimensional grid scan method allows initial location of microcrystals. The CY+ GUI utility enables efficient assessment of a grid scan's analysis output and subsequent collection of multiple wedges of data (so-called minisets) from automatically selected positions in a serial and automated way. The automated data processing (adp) routines adapted to the SSX data collection mode provide near real time analysis for data in both CBF and HDF5 formats. The automatic data merging (adm) is the latest extension of the DA+ data analysis software routines. It utilizes the sxdm (SSX data merging) package, which provides automatic online scaling and merging of minisets and allows identification of a minisets subset resulting in the best quality of the final merged data. The results of both adp and adm are sent to the MX MongoDB database and displayed in the web-based tracker, which provides the user with on-the-fly feedback about the experiment.

13.
Nat Struct Mol Biol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918637

RESUMO

Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.

14.
Protein Sci ; 33(4): e4957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501509

RESUMO

The human NQO1 (hNQO1) is a flavin adenine nucleotide (FAD)-dependent oxidoreductase that catalyzes the two-electron reduction of quinones to hydroquinones, being essential for the antioxidant defense system, stabilization of tumor suppressors, and activation of quinone-based chemotherapeutics. Moreover, it is overexpressed in several tumors, which makes it an attractive cancer drug target. To decipher new structural insights into the flavin reductive half-reaction of the catalytic mechanism of hNQO1, we have carried serial crystallography experiments at new ID29 beamline of the ESRF to determine, to the best of our knowledge, the first structure of the hNQO1 in complex with NADH. We have also performed molecular dynamics simulations of free hNQO1 and in complex with NADH. This is the first structural evidence that the hNQO1 functional cooperativity is driven by structural communication between the active sites through long-range propagation of cooperative effects across the hNQO1 structure. Both structural results and MD simulations have supported that the binding of NADH significantly decreases protein dynamics and stabilizes hNQO1 especially at the dimer core and interface. Altogether, these results pave the way for future time-resolved studies, both at x-ray free-electron lasers and synchrotrons, of the dynamics of hNQO1 upon binding to NADH as well as during the FAD cofactor reductive half-reaction. This knowledge will allow us to reveal unprecedented structural information of the relevance of the dynamics during the catalytic function of hNQO1.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Cristalografia , Temperatura , NAD , Antineoplásicos/química , Flavinas , Cristalografia por Raios X , NAD(P)H Desidrogenase (Quinona)
15.
IUCrJ ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39008358

RESUMO

The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Šresolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.

16.
IUCrJ ; 11(Pt 2): 237-248, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446456

RESUMO

Serial crystallography requires large numbers of microcrystals and robust strategies to rapidly apply substrates to initiate reactions in time-resolved studies. Here, we report the use of droplet miniaturization for the controlled production of uniform crystals, providing an avenue for controlled substrate addition and synchronous reaction initiation. The approach was evaluated using two enzymatic systems, yielding 3 µm crystals of lysozyme and 2 µm crystals of Pdx1, an Arabidopsis enzyme involved in vitamin B6 biosynthesis. A seeding strategy was used to overcome the improbability of Pdx1 nucleation occurring with diminishing droplet volumes. Convection within droplets was exploited for rapid crystal mixing with ligands. Mixing times of <2 ms were achieved. Droplet microfluidics for crystal size engineering and rapid micromixing can be utilized to advance time-resolved serial crystallography.


Assuntos
Arabidopsis , Microfluídica , Cristalografia , Cognição , Convecção
17.
bioRxiv ; 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37214971

RESUMO

Cytochrome c oxidase (C c O) is a large membrane-bound hemeprotein that catalyzes the reduction of dioxygen to water. Unlike classical dioxygen binding hemeproteins with a heme b group in their active sites, C c O has a unique binuclear center (BNC) comprised of a copper atom (Cu B ) and a heme a 3 iron, where O 2 binds and is reduced to water. CO is a versatile O 2 surrogate in ligand binding and escape reactions. Previous time-resolved spectroscopic studies of the CO complexes of bovine C c O (bC c O) revealed that photolyzing CO from the heme a 3 iron leads to a metastable intermediate (Cu B -CO), where CO is bound to Cu B , before it escapes out of the BNC. Here, with a time-resolved serial femtosecond X-ray crystallography-based pump-probe method, we detected a geminate photoproduct of the bC c O-CO complex, where CO is dissociated from the heme a 3 iron and moved to a temporary binding site midway between the Cu B and the heme a 3 iron, while the locations of the two metal centers and the conformation of the Helix-X, housing the proximal histidine ligand of the heme a 3 iron, remain in the CO complex state. This new structure, combined with other reported structures of bC c O, allows the full definition of the ligand dissociation trajectory, as well as the associated protein dynamics.

18.
Cell Rep Methods ; 1(6): None, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34723237

RESUMO

Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.


Assuntos
Proteínas de Membrana , Bibliotecas de Moléculas Pequenas , Humanos , Proteínas de Membrana/química , Cristalografia por Raios X , Cristalização , Automação
19.
Acta Crystallogr D Struct Biol ; 76(Pt 8): 751-758, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32744257

RESUMO

Sample handling and manipulation for cryoprotection currently remain critical factors in X-ray structural determination. While several microchips for macromolecular crystallization have been proposed during the last two decades to partially overcome crystal-manipulation issues, increased background noise originating from the scattering of chip-fabrication materials has so far limited the attainable resolution of diffraction data. Here, the conception and use of low-cost, X-ray-transparent microchips for in situ crystallization and direct data collection, and structure determination at atomic resolution close to 1.0 Å, is presented. The chips are fabricated by a combination of either OSTEMER and Kapton or OSTEMER and Mylar materials for the implementation of counter-diffusion crystallization experiments. Both materials produce a sufficiently low scattering background to permit atomic resolution diffraction data collection at room temperature and the generation of 3D structural models of the tested model proteins lysozyme, thaumatin and glucose isomerase. Although the high symmetry of the three model protein crystals produced almost complete data sets at high resolution, the potential of in-line data merging and scaling of the multiple crystals grown along the microfluidic channels is also presented and discussed.


Assuntos
Cristalografia por Raios X/métodos , Proteínas/química , Manejo de Espécimes/métodos , Coleta de Dados , Análise em Microsséries , Conformação Proteica , Temperatura
20.
IUCrJ ; 7(Pt 6): 1131-1141, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209324

RESUMO

Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA