Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Plant Dis ; 101(1): 192-199, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682302

RESUMO

Symptoms of clover rot caused by Sclerotinia trifoliorum or S. sclerotiorum are identical, making differentiation and identification of the causal species difficult and time consuming. Polymerase chain reaction (PCR) amplification and nucleotide sequencing were used to examine 40 isolates of S. trifoliorum (29 from Poland, 11 from the United States) and 55 isolates of S. sclerotiorum (26 from Poland, 29 from the United States). We determined that amplification of the ß-tubulin and calmodulin genes with TU1/TU2/TU3 and SscadF1/SscadR1 PCR primers and the presence of introns and single-nucleotide polymorphisms (SNP) within the ribosomal DNA (rDNA) as detected with NS1/NS8 and internal transcribed spacer (ITS)1/ITS4 PCR primers are effective for rapidly and accurately differentiating between the two species of Sclerotinia. In addition, our research revealed a lack of intraspecies variation within S. sclerotiorum isolates from the United States and Poland using these same molecular markers. We detected a relatively high degree of intraspecies variability among isolates of S. trifoliorum from the United States and Poland using the presence of introns and SNP within the rDNA. SNP and nuclear small-subunit rDNA analyses revealed distinct groups of S. trifoliorum among the isolates used in this study. The results of this study provide useful information for clover breeders and pathologists looking to develop clover varieties with durable resistance.

3.
Breed Sci ; 66(2): 281-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162499

RESUMO

Fusarium head blight (FHB), caused by the fungal plant pathogen Fusarium, is a fungal disease that occurs in wheat and can cause significant yield and grain quality losses. The present paper examines variation in the resistance of spring wheat lines derived from a cross between Zebra and Saar cultivars. Experiments covering 198 lines and parental cultivars were conducted in three years, in which inoculation with Fusarium culmorum was applied. Resistance levels were estimated by scoring disease symptoms on kernels. In spite of a similar reaction of parents to F. culmorum infection, significant differentiation between lines was found in all the analyzed traits. Seven molecular markers selected as linked to FHB resistance QTLs gave polymorphic products for Zebra and Saar: Xgwm566, Xgwm46, Xgwm389, Xgwm533, Xgwm156, Xwmc238, and Xgwm341. Markers Xgwm389 and Xgwm533 were associated with the rate of Fusarium-damaged kernels (FDK) as well as with kernel weight per spike and thousand kernel weight in control plants. Zebra allele of marker Xwmc238 increased kernel weight per spike and thousand kernel weight both in control and infected plants, whereas Zebra allele of marker Xgwm566 reduced the percentage of FDK and simultaneously reduced the thousand kernel weight in control and infected plants.

4.
Front Microbiol ; 11: 1002, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528440

RESUMO

Much of the mitogenome variation observed in fungal lineages seems driven by mobile genetic elements (MGEs), which have invaded their genomes throughout evolution. The variation in the distribution and nucleotide diversity of these elements appears to be the main distinction between different fungal taxa, making them promising candidates for diagnostic purposes. Fungi of the genus Fusarium display a high variation in MGE content, from MGE-poor (Fusarium oxysporum and Fusarium fujikuroi species complex) to MGE-rich mitogenomes found in the important cereal pathogens F. culmorum and F. graminearum sensu stricto. In this study, we investigated the MGE variation in these latter two species by mitogenome analysis of geographically diverse strains. In addition, a smaller set of F. cerealis and F. pseudograminearum strains was included for comparison. Forty-seven introns harboring from 0 to 3 endonucleases (HEGs) were identified in the standard set of mitochondrial protein-coding genes. Most of them belonged to the group I intron family and harbored either LAGLIDADG or GIY-YIG HEGs. Among a total of 53 HEGs, 27 were shared by all fungal strains. Most of the optional HEGs were irregularly distributed among fungal strains/species indicating ancestral mosaicism in MGEs. However, among optional MGEs, one exhibited species-specific conservation in F. culmorum. While in F. graminearum s.s. MGE patterns in cox3 and in the intergenic spacer between cox2 and nad4L may facilitate the identification of this species. Thus, our results demonstrate distinctive traits of mitogenomes for diagnostic purposes of Fusaria.

5.
Toxins (Basel) ; 10(5)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883395

RESUMO

Fusarium culmorum is a ubiquitous, soil-borne fungus (ascomycete) causing foot and root rot and Fusarium head blight on cereals. It is responsible for yield and quality losses as well as grain contamination with mycotoxins, which are a potential health hazard. An extremely sensitive mitochondrial-based qPCR assay (FcMito qPCR) for quantification of F. culmorum was developed in this study. To provide specificity, the FcMito assay was successfully validated against 85 F. culmorum strains and 53 isolates of 30 other fungal species. The assay efficiency and sensitivity were evaluated against different F. culmorum strains with various amounts of pure fungal DNA and in the presence of background wheat DNA. The results demonstrated the high efficiency of the assay (97.2⁻106.0%, R²-values > 0.99). It was also shown that, in the presence of background DNA, 0.01 pg of fungal template could be reliably quantified. The FcMito assay was used to quantify F. culmorum DNA using 108 grain samples with different trichothecene levels. A significant positive correlation was found between fungal DNA quantity and the total trichothecene content. The obtained results showed that the sensitivity of the FcMito assay was much higher than the nuclear-based qPCR assay for F. culmorum.


Assuntos
Grão Comestível/microbiologia , Fusarium/genética , Triticum/microbiologia , Bioensaio , DNA Fúngico/análise , Mitocôndrias , Reação em Cadeia da Polimerase em Tempo Real , Tricotecenos/análise
6.
Biotechnol Prog ; 33(5): 1381-1392, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28726315

RESUMO

This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017.


Assuntos
Ouro/metabolismo , Nanopartículas Metálicas/química , Mucor/metabolismo , Biotecnologia/métodos , Sobrevivência Celular , DNA Fúngico/genética , DNA Fúngico/metabolismo , Ouro/química , Mucor/genética , Micélio/metabolismo , Tamanho da Partícula
7.
J Plant Physiol ; 170(11): 1010-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23566872

RESUMO

Grasses very often form symbiotic associations with Neotyphodium/Epichloë endophytic fungi. These endophytes often allow the host grass to be protected from different pathogens. However, there is little known about the mechanisms of such endophyte influence on the host. Thus, the purpose of this research was to examine the effect of the N. lolii endophyte on the total production of phenolic compounds, VOCs emission and the resistance of three perennial ryegrass genotypes infected by pathogenic Fusarium poae. Analyses of total phenolics content were performed in control (not inoculated) and inoculated plants after 1, 2, 3, 4, 5, and 6 days (DAI) and for VOCs after 0, 3, 6 and 12 DAI. The presence of endophytes significantly reduced the disease index in two of the three genotypes relative to that in E-. Plants infected by N. lolii exhibited higher production of phenolics relative to the E- plants. The highest amounts of phenolics were observed on the second and sixth DAI. Genotype Nl22 showed the strongest effect of the endophyte on the production of phenolics, which increased by over 61%. Both the endophyte infected and non-infected plants emitted most abundantly two GLVs ((Z)-3-hexenal, (Z)-3-hexen-1-yl acetate), three terpenes (linalool, (Z)-ocimene, ß-caryophyllene) and three shikimic acid pathway derivatives (benzyl acetate, indole, and methyl salicylate). The endophyte presence and the intervals of VOCs detection were a highly significant source of variation for all emitted volatiles (P<0.001). The genotype of the perennial ryegrass significantly affected only the emission of methyl salicylate (P<0.05) and ß-caryophyllene (P<0.05). Most of the VOCs ((Z)-3-hexen-1-yl acetate, (Z)-3-hexenal, linalool and methyl salicylate) reached their highest levels of emission on the sixth DAI, when averaged over genotypes and endophyte status. The results highlight the role of Neotyphodium spp. in the mediation of quadro-trophic interactions among plants, symbiotic endophytes, invertebrate herbivores and plant pathogenic fungi. Our results also confirm the fact that symbiotic plants can activate a defense reaction faster than non-symbiotic plants after a pathogen attack. Thus, N. lolii can be involved in the defense of perennial ryegrass against pathogens and potentially could be central to the host plants' protection.


Assuntos
Lolium/metabolismo , Lolium/microbiologia , Neotyphodium/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas
8.
Int J Food Microbiol ; 148(3): 168-76, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21664712

RESUMO

Rapid and sensitive methods to detect Fusarium culmorum and trichothecene and zearalenone producing strains in food and feed are valuable in predicting potential contamination. In this study the effectiveness of primers, recommended in the literature, for species identification of F. culmorum and basic genes encoding for mycotoxin production was tested. A total of 68 isolates of F. culmorum were collected from cereals and potato between 2005 and 2008 from different Polish provinces. It was shown that from among the four primer pairs enabling the identification of F. culmorum, and therefore also to establish its presence in the material, only primers Fc01F/Fc01R seem to be fully effective in the case of Polish strains. Determination of material contamination by F. culmorum, however, is only a first step in determining food safety. It is also extremely important to identify genes encoding the potential ability to produce mycotoxins. It was shown that three pairs of primers (tox5-1/tox5-2, HATriF/HATriR and Tri5F/Tri5R) enable a fully effective identification of the presence of the Tri5 gene responsible for producing trichothecenes. Determination of the DON-chemotype, and thus identification of the strains of F. culmorum potentially producing deoxynivalenol, is enabled equally by MinusTri7F/MinusTri7F, Tri7F/Tri7DON and Tri13F/Tri13DONR. However, a determination of the NIV-chemotype, and thus identification of the strains potentially producing nivalenol, is enabled by Tri7F/Tri7R, Tri7F/Tri7NIV and Tri13NIVF/Tri13R. The potential ability of isolates to produce ZEA can be determined to the same degree in assay with PKS4-PS.1/PKS4-PS.2 and F1/R1.


Assuntos
Primers do DNA/genética , Fusarium/genética , Tricotecenos/biossíntese , Zearalenona/biossíntese , Sequência de Bases , DNA Fúngico/genética , Contaminação de Alimentos , Microbiologia de Alimentos , Fusarium/classificação , Fusarium/isolamento & purificação , Fusarium/metabolismo , Genes Fúngicos , Micotoxinas/biossíntese , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA