Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36560062

RESUMO

The field of terahertz and millimeter wave science and technology has evolved in recent years into an area attracting a lot of attention from all sides of science, industry, and the public [...].


Assuntos
Tecnologia
2.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640889

RESUMO

We present a rotational terahertz imaging system for inline nondestructive testing (NDT) of press sleeves for the paper industry during fabrication. Press sleeves often consist of polyurethane (PU) which is deposited by rotational molding on metal barrels and its outer surface mechanically processed in several milling steps afterwards. Due to a stabilizing polyester fiber mesh inlay, small defects can form on the sleeve's backside already during the initial molding, however, they cannot be visually inspected until the whole production processes is completed. We have developed a fast-scanning frequenc-modulated continuous wave (FMCW) terahertz imaging system, which can be integrated into the manufacturing process to yield high resolution images of the press sleeves and therefore can help to visualize hidden structural defects at an early stage of fabrication. This can save valuable time and resources during the production process. Our terahertz system can record images at 0.3 and 0.5 THz and we achieve data acquisition rates of at least 20 kHz, exploiting the fast rotational speed of the barrels during production to yield sub-millimeter image resolution. The potential of automated defect recognition by a simple machine learning approach for anomaly detection is also demonstrated and discussed.


Assuntos
Imagem Terahertz , Aprendizado de Máquina
3.
Nano Lett ; 14(10): 5834-8, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25203787

RESUMO

We present terahertz (THz) detectors based on top-gated graphene field effect transistors (GFETs) with integrated split bow-tie antennas. The GFETs were fabricated using graphene grown by chemical vapor deposition (CVD). The THz detectors are capable of room-temperature rectification of a 0.6 THz signal and achieve a maximum optical responsivity better than 14 V/W and minimum optical noise-equivalent power (NEP) of 515 pW/Hz(0.5). Our results are a significant improvement over previous work on graphene direct detectors and are comparable to other established direct detector technologies. This is the first time room-temperature direct detection has been demonstrated using CVD graphene, which introduces the potential for scalable, wafer-level production of graphene detectors.

4.
Sci Rep ; 14(1): 5534, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448503

RESUMO

We present observations of parasitic frequency components in the emission spectrum of typical photomixer sources for continuous wave (CW) terahertz generation. Broadband tunable photomixer systems are often used in combination with direct power detectors, e.g., for source and/or detector characterization. Here, spectral components besides the intended terahertz emission at the difference frequency of the two excitation lasers can significantly distort the measurement results. In this work, the appearance of parasitic mixing signals is observed in broadband measurements with a broadband antenna-coupled field-effect transistor as terahertz detector (TeraFET). The measurements reveal weaker spectral absorption features than expected and also a signal plateau towards higher frequencies, both strongly indicating a background in the detection signals. The photomixer emission is investigated in detail with a terahertz Fourier-transform infrared spectrometer (FTIR). We relate the observed parasitic frequency components with good quantitative agreement with the mode spectra of the semiconductor lasers. We also present one possible approach to overcome some of the issues, and we emphasize the importance of our findings to avoid distorted measurement results. To our knowledge, the essential aspect of parasitic mixing has so far been largely ignored in the literature where terahertz CW photomixer emitters are widely used for spectrally resolved measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA