Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(4): 1464-1477, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044680

RESUMO

PURPOSE: The reproducibility of scientific reports is crucial to advancing human knowledge. This paper is a summary of our experience in replicating a balanced SSFP half-radial dual-echo imaging technique (bSTAR) using open-source frameworks as a response to the 2023 ISMRM "repeat it with me" Challenge. METHODS: We replicated the bSTAR technique for thoracic imaging at 0.55T. The bSTAR pulse sequence is implemented in Pulseq, a vendor neutral open-source rapid sequence prototyping environment. Image reconstruction is performed with the open-source Berkeley Advanced Reconstruction Toolbox (BART). The replication of bSTAR, termed open-source bSTAR, is tested by replicating several figures from the published literature. Original bSTAR, using the pulse sequence and image reconstruction developed by the original authors, and open-source bSTAR, with pulse sequence and image reconstruction developed in this work, were performed in healthy volunteers. RESULTS: Both echo images obtained from open-source bSTAR contain no visible artifacts and show identical spatial resolution and image quality to those in the published literature. A direct head-to-head comparison between open-source bSTAR and original bSTAR on a healthy volunteer indicates that open-source bSTAR provides adequate SNR, spatial resolution, level of artifacts, and conspicuity of pulmonary vessels comparable to original bSTAR. CONCLUSION: We have successfully replicated bSTAR lung imaging at 0.55T using two open-source frameworks. Full replication of a research method solely relying on information on a research paper is unfortunately rare in research, but our success gives greater confidence that a research methodology can be indeed replicated as described.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos
2.
J Magn Reson Imaging ; 59(3): 784-796, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466278

RESUMO

"Lung perfusion" in the context of imaging conventionally refers to the delivery of blood to the pulmonary capillary bed through the pulmonary arteries originating from the right ventricle required for oxygenation. The most important physiological mechanism in the context of imaging is the so-called hypoxic pulmonary vasoconstriction (HPV, also known as "Euler-Liljestrand-Reflex"), which couples lung perfusion to lung ventilation. In obstructive airway diseases such as asthma, chronic-obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma, HPV downregulates pulmonary perfusion in order to redistribute blood flow to functional lung areas in order to conserve optimal oxygenation. Imaging of lung perfusion can be seen as a reflection of lung ventilation in obstructive airway diseases. Other conditions that primarily affect lung perfusion are pulmonary vascular diseases, pulmonary hypertension, or (chronic) pulmonary embolism, which also lead to inhomogeneity in pulmonary capillary blood distribution. Several magnetic resonance imaging (MRI) techniques either dependent on exogenous contrast materials, exploiting periodical lung signal variations with cardiac action, or relying on intrinsic lung voxel attributes have been demonstrated to visualize lung perfusion. Additional post-processing may add temporal information and provide quantitative information related to blood flow. The most widely used and robust technique, dynamic-contrast enhanced MRI, is available in clinical routine assessment of COPD, CF, and pulmonary vascular disease. Non-contrast techniques are important research tools currently requiring clinical validation and cross-correlation in the absence of a viable standard of reference. First data on many of these techniques in the context of observational studies assessing therapy effects have just become available. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 5.


Assuntos
Asma , Fibrose Cística , Infecções por Papillomavirus , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Imageamento por Ressonância Magnética/métodos , Perfusão
3.
Magn Reson Med ; 90(5): 1949-1957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37317635

RESUMO

PURPOSE: To demonstrate the feasibility of high-resolution morphologic lung MRI at 0.55 T using a free-breathing balanced steady-state free precession half-radial dual-echo imaging technique (bSTAR). METHODS: Self-gated free-breathing bSTAR (TE1 /TE2 /TR of 0.13/1.93/2.14 ms) lung imaging in five healthy volunteers and a patient with granulomatous lung disease was performed using a 0.55 T MR-scanner. A wobbling Archimedean spiral pole (WASP) trajectory was used to ensure a homogenous coverage of k-space over multiple breathing cycles. WASP uses short-duration interleaves randomly tilted by a small polar angle and rotated by a golden angle about the polar axis. Data were acquired continuously over 12:50 min. Respiratory-resolved images were reconstructed off-line using compressed sensing and retrospective self-gating. Reconstructions were performed with a nominal resolution of 0.9 mm and a reduced isotropic resolution of 1.75 mm corresponding to shorter simulated scan times of 8:34 and 4:17 min, respectively. Analysis of apparent SNR was performed in all volunteers and reconstruction settings. RESULTS: The technique provided artifact-free morphologic lung images in all subjects. The short TR of bSTAR in conjunction with a field strength of 0.55 T resulted in a complete mitigation of off-resonance artifacts in the chest. Mean SNR values in healthy lung parenchyma for the 12:50 min scan were 3.6 ± 0.8 and 24.9 ± 6.2 for 0.9 mm and 1.75 mm reconstructions, respectively. CONCLUSION: This study demonstrates the feasibility of morphologic lung MRI with a submillimeter isotropic spatial resolution in human subjects with bSTAR at 0.55 T.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Humanos , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Pulmão/diagnóstico por imagem
4.
Eur Radiol ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37982833

RESUMO

OBJECTIVES: In patients with congenital diaphragmatic hernia (CDH) the exact functional outcome of the affected lung side is still unknown, mainly due to the lack of spatially resolved diagnostic tools. Functional matrix-pencil decomposition (MP-) lung MRI fills this gap as it measures side-specific ventilation and perfusion. We aimed to assess the overall and side-specific pulmonary long-term outcomes of patients with CDH using lung function tests and MP-MRI. METHODS: Thirteen school-aged children with CDH (seven with small and six with large defect-sized CDH, defined as > 50% of the chest wall circumference being devoid of diaphragm tissue) and thirteen healthy matched controls underwent spirometry, multiple-breath washout, and MP-MRI. The main outcomes were forced expiratory volume in 1 second (FEV1), lung clearance index (LCI2.5), ventilation defect percentage (VDP), and perfusion defect percentage (QDP). RESULTS: Patients with a large CDH showed significantly reduced overall lung function compared to healthy controls (mean difference [95%-CIadjusted]: FEV1 (z-score) -4.26 [-5.61, -2.92], FVC (z-score) -3.97 [-5.68, -2.26], LCI2.5 (TO) 1.12 [0.47, 1.76], VDP (%) 8.59 [3.58, 13.60], QDP (%) 17.22 [13.16, 21.27]) and to patients with a small CDH. Side-specific examination by MP-MRI revealed particularly reduced ipsilateral ventilation and perfusion in patients with a large CDH (mean difference to contralateral side [95%-CIadjusted]: VDP (%) 14.80 [10.50, 19.00], QDP (%) 23.50 [1.75, 45.20]). CONCLUSIONS: Data indicate impaired overall lung function with particular limitation of the ipsilateral side in patients with a large CDH. MP-MRI is a promising tool to provide valuable side-specific functional information in the follow-up of patients with CDH. CLINICAL RELEVANCE STATEMENT: In patients with congenital diaphragmatic hernia, easily applicable MP-MRI allows specific examination of the lung side affected by the hernia and provides valuable information on ventilation and perfusion with implications for clinical practice, making it a promising tool for routine follow-up. KEY POINTS: • Functional matrix pencil decomposition (MP) MRI data from a small sample indicate reduced ipsilateral pulmonary ventilation and perfusion in children with large congenital diaphragmatic hernia (CDH). • Easily applicable pencil decomposition MRI provides valuable side-specific diagnostic information on lung ventilation and perfusion. This is a clear advantage over conventional lung function tests, helping to comprehensively follow up patients with congenital diaphragmatic hernia and monitor therapy effects.

5.
Radiology ; 303(2): 255, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133196

RESUMO

Online supplemental material is available for this article.


Assuntos
Sarcoidose , Humanos , Imageamento por Ressonância Magnética , Sarcoidose/diagnóstico por imagem
6.
Radiology ; 304(1): 195-204, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35380498

RESUMO

Background Evidence regarding short-term effects of electronic nicotine delivery systems (ENDS) and tobacco smoke on lung ventilation and perfusion is limited. Purpose To examine the immediate effect of ENDS exposure and tobacco smoke on lung ventilation and perfusion by functional MRI and lung function tests. Materials and Methods This prospective observational pilot study was conducted from November 2019 to September 2021 (substudy of randomized controlled trial NCT03589989). Included were 44 healthy adult participants (10 control participants, nine former tobacco smokers, 13 ENDS users, and 12 active tobacco smokers; mean age, 41 years ± 12 [SD]; 28 men) who underwent noncontrast-enhanced matrix pencil MRI and lung function tests before and immediately after the exposure to ENDS products or tobacco smoke. Baseline measurements were acquired after 2 hours of substance abstinence. Postexposure measurements were performed immediately after the exposure. MRI showed semiquantitative measured impairment of lung perfusion (RQ) and fractional ventilation (RFV) impairment as percentages of affected lung volume. Lung clearance index (LCI) was assessed by nitrogen multiple-breath washout to capture ventilation inhomogeneity and spirometry to assess airflow limitation. Absolute differences were calculated with paired Wilcoxon signed-rank test and differences between groups with unpaired Mann-Whitney test. Healthy control participants underwent two consecutive MRI measurements to assess MRI reproducibility. Results MRI was performed and lung function measurement was acquired in tobacco smokers and ENDS users before and after exposure. MRI showed a decrease of perfusion after exposure (RQ, 8.6% [IQR, 7.2%-10.0%] to 9.1% [IQR, 7.8%-10.7%]; P = .03) and no systematic change in RFV (P = .31) among tobacco smokers. Perfusion increased in participants who used ENDS after exposure (RQ, 9.7% [IQR, 7.1%-10.9%] to 9.0% [IQR, 6.9%-10.0%]; P = .01). RFV did not change (P = .38). Only in tobacco smokers was LCI elevated after smoking (P = .02). Spirometry indexes did not change in any participants. Conclusion MRI showed a decrease of lung perfusion after exposure to tobacco smoke and an increase of lung perfusion after use of electronic nicotine delivery systems. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Kligerman in this issue.


Assuntos
Poluição por Fumaça de Tabaco , Vaping , Adulto , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Perfusão , Estudos Prospectivos , Reprodutibilidade dos Testes , Fumar/efeitos adversos , Vaping/efeitos adversos
7.
Magn Reson Med ; 87(4): 1886-1893, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34775622

RESUMO

PURPOSE: To show that for tissues the conspicuous asymmetries in the frequency response function of bSSFP can be mitigated by using a short enough TR. THEORY AND METHODS: Configuration theory indicates that bSSFP becomes apparently "pure" (i.e., exhibiting a symmetric profile) in the limit of TR → 0 . To this end, the frequency profile of bSSFP was measured as a function of the TR using a manganese-doped aqueous probe, as well as brain tissue that was shown to exhibit a pronounced asymmetry due to its microstructure. The frequency response function was sampled using N = 72 (phantom) and N = 36 (in vivo) equally distributed linear RF phase increments in the interval [ 0 , 2 π ) . Imaging was performed with 2.0 mm isotropic resolution over a TR range of 1.5-8 ms at 3 and 1.5 T. RESULTS: As expected, pure substances showed a symmetric TR-independent frequency profile, whereas brain tissue revealed a pronounced asymmetry. The observed asymmetry for the tissue, however, decreases with decreasing TR and gives strong evidence that the frequency response function of bSSFP becomes symmetric in the limit of TR → 0 , in agreement with theory. The limit of apparently pure bSSFP imaging can thus be achieved for a TR ∼ 1.5 ms at 1.5 T, whereas at 3 T, tissues still show some residual asymmetry. CONCLUSION: In the limit of short enough TR, tissues become apparently pure for bSSFP. This limit can be reached for brain tissue at 1.5 T with TR ∼ 1-2 ms at clinically relevant resolutions.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
8.
Magn Reson Med ; 88(1): 391-405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35348244

RESUMO

PURPOSE: To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI. METHODS: Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes. RESULTS: Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively. CONCLUSION: Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses.


Assuntos
Fibrose Cística , Adulto , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X
9.
Respiration ; 101(3): 281-290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34808631

RESUMO

BACKGROUND: Inhalation therapy is one of the cornerstones of the daily treatment regimen in patients with cystic fibrosis (CF). Recommendations regarding the addition of bronchodilators, especially salbutamol are conflicting due to the lack of evidence. New diagnostic measures such as multiple-breath washout (MBW) and functional magnetic resonance imaging (MRI) have the potential to reveal new insights into bronchodilator effects in patients with CF. OBJECTIVE: The objective of the study was to comprehensively assess the functional response to nebulized inhalation with salbutamol in children with CF. METHODS: Thirty children aged 6-18 years with stable CF performed pulmonary function tests, MBW, and matrix pencil-MRI before and after standardized nebulized inhalation of salbutamol. RESULTS: Lung clearance index decreased (improved) by -0.24 turnover (95% confidence interval [CI]: -0.53 to 0.06; p = 0.111). Percentage of the lung volume with impaired fractional ventilation and relative perfusion decreased (improved) by -0.79% (CI: -1.99 to 0.42; p = 0.194) and -1.31% (CI: -2.28 to -0.35; p = 0.009), respectively. Forced expiratory volume (FEV1) increased (improved) by 0.41 z-score (CI: 0.24-0.58; p < 0.0001). We could not identify specific clinical factors associated with a more pronounced effect of salbutamol. CONCLUSIONS: There is a positive short-term effect of bronchodilator inhalation on FEV1 in patients with CF, which is independent of ventilation inhomogeneity. Heterogeneous response between patients suggests that for prediction of a therapeutic effect this should be tested by spirometry in every patient individually.


Assuntos
Fibrose Cística , Adolescente , Albuterol/uso terapêutico , Broncodilatadores/uso terapêutico , Criança , Fibrose Cística/diagnóstico por imagem , Fibrose Cística/tratamento farmacológico , Volume Expiratório Forçado/fisiologia , Humanos , Pulmão/patologia , Imageamento por Ressonância Magnética , Testes de Função Respiratória/métodos , Espirometria
10.
Pediatr Radiol ; 52(7): 1255-1265, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35305121

RESUMO

BACKGROUND: The management of asymptomatic congenital lung malformations is debated. Particularly, there is a lack of information regarding long-term growth and development of the remaining lung in children following lung resection for congenital lung malformations. In addition to conventional pulmonary function tests, we used novel functional magnetic resonance imaging (MRI) methods to measure perfusion and ventilation. OBJECTIVE: To assess functionality of the remaining lung expanded into the thoracic cavity after resection of congenital lung malformations. MATERIALS AND METHODS: A prospective, cross-sectional pilot study in five children who had surgery for congenital lung malformations during infancy. Participants had structural and functional MRI as well as spirometry, body plethysmography and multiple breath washout at school age. RESULTS: Structural MRI showed an expansion of the remaining lung in all cases. Fractional ventilation and relative perfusion of the expanded lung were locally decreased in functional MRI. In all other parts of the lungs, fractional ventilation and relative perfusion were normal in all children. There was an association between overall impairment of perfusion and elevated lung clearance index. The results of spirometry and body plethysmography varied between patients, including normal lung function, restriction and obstruction. CONCLUSION: Fractional ventilation and relative perfusion maps from functional MRI specifically locate impairment of the remaining lung after lung resection. These changes are not captured by conventional measures such as structural MRI and standard pulmonary function tests. Therefore, following lung resection for congenital lung malformation, children should be investigated more systematically with functional lung MRI.


Assuntos
Pneumopatias , Anormalidades do Sistema Respiratório , Criança , Estudos Transversais , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Pneumopatias/congênito , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Estudos Prospectivos
11.
Magn Reson Med ; 85(2): 1079-1092, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32892445

RESUMO

PURPOSE: To investigate the repeatability and reproducibility of lung segmentation and their impact on the quantitative outcomes from functional pulmonary MRI. Additionally, to validate an artificial neural network (ANN) to accelerate whole-lung quantification. METHOD: Ten healthy children and 25 children with cystic fibrosis underwent matrix pencil decomposition MRI (MP-MRI). Impaired relative fractional ventilation (RFV ) and relative perfusion (RQ ) from MP-MRI were compared using whole-lung segmentation performed by a physician at two time-points (At1 and At2 ), by an MRI technician (B), and by an ANN (C). Repeatability and reproducibility were assess with Dice similarity coefficient (DSC), paired t-test and Intraclass-correlation coefficient (ICC). RESULTS: The repeatability within an observer (At1 vs At2 ) resulted in a DSC of 0.94 ± 0.01 (mean ± SD) and an unsystematic difference of -0.01% for RFV (P = .92) and +0.1% for RQ (P = .21). The reproducibility between human observers (At1 vs B) resulted in a DSC of 0.88 ± 0.02, and a systematic absolute difference of -0.81% (P < .001) for RFV and -0.38% (P = .037) for RQ . The reproducibility between human and the ANN (At1 vs C) resulted in a DSC of 0.89 ± 0.03 and a systematic absolute difference of -0.36% for RFV (P = .017) and -0.35% for RQ (P = .002). The ICC was >0.98 for all variables and comparisons. CONCLUSIONS: Despite high overall agreement, there were systematic differences in lung segmentation between observers. This needs to be considered for longitudinal studies and could be overcome by using an ANN, which performs as good as human observers and fully automatizes MP-MRI post-processing.


Assuntos
Fibrose Cística , Imageamento por Ressonância Magnética , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Reprodutibilidade dos Testes
12.
Magn Reson Med ; 86(6): 3224-3235, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34337778

RESUMO

PURPOSE: Lung impairment from functional MRI is frequently assessed as defect percentage. The defect distribution, however, is currently not quantified. The purpose of this work was to develop a novel measure that quantifies how clustered or scattered defects in functional lung MRI appear, and to evaluate it in pediatric cystic fibrosis. THEORY: The defect distribution index (DDI) calculates a score for each lung voxel categorized as defected. The index increases according to how densely and how far an expanding circle around a defect voxel contains more than 50% defect voxels. METHODS: Fractional ventilation and perfusion maps of 53 children with cystic fibrosis were previously acquired with matrix pencil decomposition MRI. In this work, the DDI is compared to a visual score of 3 raters who evaluated how clustered the lung defects appear. Further, spearman correlations between DDI and lung function parameters were determined. RESULTS: The DDI strongly correlates with the visual scoring (r = 0.90 for ventilation; r = 0.88 for perfusion; P < .0001). Although correlations between DDI and defect percentage are moderate to strong (r = 0.61 for ventilation; r = 0.75 for perfusion; P < .0001), the DDI distinguishes between patients with comparable defect percentage. CONCLUSION: The DDI is a novel measure for functional lung MRI. It provides complementary information to the defect percentage because the DDI assesses defect distribution rather than defect size. The DDI is applicable to matrix pencil MRI data of cystic fibrosis patients and shows very good agreement with human perception of defect distributions.


Assuntos
Fibrose Cística , Criança , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Perfusão , Respiração
13.
Magn Reson Med ; 84(1): 237-246, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31808582

RESUMO

PURPOSE: To investigate the prospects of a minimal-TR half-radial dual-echo balanced steady-state free precession (bSSFP) acquisition for high-resolution and artifact-free thoracic imaging at 1.5T. METHODS: Feasibility of bSSFP imaging using isotropic half-radial dual-echo (hr-de) projections with TE1 /TE2 /TR of 0.12/1.18/1.39 ms acquired along Archimedean spiral trajectories was demonstrated for phantoms and in vivo thorax scans at 1.5T. The centered-out projection offers an ultra-short echo (UTE) comparable to contemporary spoiled gradient echo (SPGR) UTE radial acquisitions used for the assessment of chest morphology. Signal intensities of hr-de-bSSFP were measured and compared to UTE-SPGR in a phantom and for parenchyma and blood in vivo and compared to theory. RESULTS: For the lung parenchyma and the blood, hr-de-bSSFP provided more than 4 times higher signal intensity than contemporary UTE-SPGR imaging. The measured hr-de-bSSFP and UTE-SPGR signal ratios were in the agreement with theoretically simulated values. Overall, the very short TR of hr-de-bSSFP successfully mitigated off-resonance artifacts offering high-quality breath-hold thoracic imaging at isotropic resolution of 1.7 mm. The application of a smooth interleaved spiral trajectory for half-radial readouts improved the robustness of hr-de-bSSFP to cardiac motion. CONCLUSION: Thoracic hr-de-bSSFP offers artifact-free chest images with considerably improved signal intensity as compared to contemporary UTE-SPGR imaging at 1.5T.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Imagens de Fantasmas
14.
Radiologe ; 60(9): 823-830, 2020 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-32776240

RESUMO

CLINICAL/METHODOLOGICAL ISSUE: The differentiated assessment of respiratory mechanics, gas exchange and pulmonary circulation, as well as structural impairment of the lung are essential for the treatment of patients with cystic fibrosis (CF). Clinical lung function measurements are often not sufficiently specific and are often difficult to perform. STANDARD RADIOLOGICAL METHODS: The standard procedures for pulmonary imaging are chest X­ray and computed tomography (CT) for assessing lung morphology. In more recent studies, an increasing number of centers are using magnetic resonance imaging (MRI) to assess lung structure and function. However, functional imaging is currently limited to specialized centers. METHODOLOGICAL INNOVATIONS: In patients with CF, studies showed that MRI with hyperpolarized gases and Fourier decomposition/matrix pencil MRI (FD/MP-MRI) are feasible for assessing pulmonary ventilation. For pulmonary perfusion, dynamic contrast-enhanced MRI (DCE-MRI) or contrast-free methods, e.g., FD-MRI, can be used. PERFORMANCE: Functional MRI provides more accurate insight into the pathophysiology of pulmonary function at the regional level. Advantages of MRI over X­ray are its lack of ionizing radiation, the large number of lung function parameters that can be extracted using different contrast mechanisms, and ability to be used repeatedly over time. ACHIEVEMENTS: Early assessment of lung function impairment is needed as the structural changes usually occur later in the course of the disease. However, sufficient experience in clinical application exist only for certain functional lung MRI procedures. PRACTICAL RECOMMENDATIONS: Clinical application of the aforementioned techniques, except for DCE-MRI, should be restricted to scientific studies.


Assuntos
Fibrose Cística , Pulmão , Imageamento por Ressonância Magnética , Meios de Contraste , Fibrose Cística/complicações , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Ventilação Pulmonar
15.
Magn Reson Med ; 81(3): 1915-1923, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30346077

RESUMO

PURPOSE: To introduce an alternative framework for perfusion and ventilation lung imaging at 3 T using transient spoiled gradient echo (tSPGR) acquisitions. METHODS: Sets of coronal 2D time-resolved lung image series were acquired in 5 healthy volunteers using tSPGR and compared with contemporary SPGR and ultrafast balanced SSFP (uf-bSSFP) implementations at 1.5 T and 3 T. Sequence parameters and view ordering were optimized for tSPGR to yield maximum signal intensity in the lung tissue. Signal-to-noise ratio and contrast-to-noise ratio analyses were performed in all acquired tSPGR, SPGR, and uf-bSSFP data sets. Matrix pencil decomposition was applied to generate functional parameter maps, including fractional ventilation, relative perfusion, and blood arrival time. RESULTS: For the lung, the signal intensity of tSPGR imaging was maximal for minimal TR and TE settings of 0.99 ms and 0.43 ms, respectively. Moreover, low RF spoiling increments in combination with a centric view ordering resulted in a further signal-to-noise ratio increase of about 30% to 40%. The average signal-to-noise ratio in the lung parenchyma was 73.3 for uf-bSSFP, 38.1 for tSPGR, 20.7 for SPGR at 1.5 T, and 31.2 for uf-bSSFP, 35.6 for tSPGR, and 21.3 for SPGR at 3 T. The average ventilation and perfusion contrast-to-noise ratio was 33.2 and 36.2 for uf-bSSFP, 15.4 and 12.5 for tSPGR, 13.5 and 4.1 for SPGR at 1.5 T, and 16.5 and 11.3 for uf-bSSFP, 29.7 and 50.8 for tSPGR, and 22.4 and 16.5 for SPGR at 3 T, respectively. CONCLUSION: At 3 T, application of balanced SSFP is limited, so tSPGR offers an alternative framework for successful lung function assessment using matrix pencil MRI.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Ondas de Rádio , Algoritmos , Artefatos , Meios de Contraste , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Perfusão , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
16.
Magn Reson Med ; 82(4): 1312-1321, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31111551

RESUMO

PURPOSE: To improve the robustness of pulmonary ventilation- and perfusion-weighted imaging with Fourier decomposition (FD) MRI in the presence of respiratory and cardiac frequency variations by replacing the standard fast Fourier transform with the more general nonuniform Fourier transform. THEORY AND METHODS: Dynamic coronal single-slice MRI of the thorax was performed in 11 patients and 5 healthy volunteers on a 1.5T whole-body scanner using a 2D ultra-fast balanced steady-state free-precession sequence with temporal resolutions of 4-9 images/s. For the proposed nonuniform Fourier-decomposition (NUFD) approach, the original signal with variable physiological frequencies that was acquired with constant sampling rate was retrospectively transformed into a signal with (ventilation or perfusion) frequency-adapted sampling rate. For that purpose, frequency tracking was performed with the synchro-squeezed wavelet transform. Ventilation- and perfusion-weighted NUFD amplitude and signal delay maps were generated and quantitatively compared with regularly sampled FD maps based on their signal-to-noise ratio (SNR). RESULTS: Volunteers and patients showed statistically significant increases of SNR in frequency-adapted NUFD results compared to regularly sampled FD results. For ventilation data, the mean SNR increased by 43.4%±25.3% and 24.4%±31.9% in volunteers and patients, respectively; for perfusion data, SNR increased by 93.0%±36.1% and 75.6%±62.8% . Two patients showed perfusion signal in pulmonary areas with NUFD that could not be imaged with FD. CONCLUSION: This study demonstrates that using nonuniform Fourier transform in combination with frequency tracking can significantly increase SNR and reduce frequency overlaps by collecting the signal intensity onto single frequency bins.


Assuntos
Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Ventilação Pulmonar/fisiologia , Razão Sinal-Ruído
17.
Magn Reson Med ; 79(1): 246-255, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28337782

RESUMO

PURPOSE: To assess the feasibility of 3D oxygen-enhanced (OE) MRI of the lung at 1.5T using multi-volumetric ultra-fast balanced steady-state free precession (ufSSFP) acquisitions. METHODS: Isotropic imaging of the lung for OE-MRI was performed with an adapted 3D ufSSFP sequence using five breath-hold acquisitions ranging from functional residual capacity to tidal inspiration under both normoxic (room air) and hyperoxic (100% O2 ) gas conditions. For each O2 concentration, a sponge model (which captures the parenchymal signal intensity variation as a function of the lung volume) was fitted to the acquired multi-volumetric datasets after semiautomatic lung segmentation and deformable image registration. From the retrieved model parameters, 3D oxygen-enhancement maps were calculated. RESULTS: For OE ufSSFP imaging, the maximum parenchymal signal is observed for flip angles around 23° under both normoxic and hyperoxic conditions. It is found that the sponge model accurately describes parenchymal signal at different breathing positions, thereby mitigating the confounding bias in the estimated oxygen enhancement from residual density modulations. From the model, an average lung oxygen enhancement of 7.0% ± 0.3% was found in the healthy volunteers, and the oxygen-enhancement maps indicate a ventral to dorsal gravitation-related gradient. CONCLUSION: The study demonstrates the feasibility of whole-lung OE-MRI from multi-volumetric ufSSFP in healthy volunteers. Magn Reson Med 79:246-255, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/química , Adulto , Suspensão da Respiração , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Pulmão/efeitos dos fármacos , Masculino , Reprodutibilidade dos Testes , Respiração
18.
Magn Reson Med ; 79(2): 839-845, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28520198

RESUMO

PURPOSE: To demonstrate the feasibility of oxygen-dependent relaxometry in human lung using an inversion recovery ultra-fast steady-state free precession (IR-ufSSFP) technique. METHODS: Electrocardiogram-triggered pulmonary relaxometry with IR-ufSSFP was performed in 7 healthy human subjects at 1.5 T. The data were acquired under both normoxic and hyperoxic conditions. In a single breath-hold of less than 9 seconds, 30 transient state IR-ufSSFP images were acquired, yielding longitudinal (T1) and transversal (T2) relaxometry parameter maps using voxel-wise nonlinear fitting. Possible spatial misalignments between consecutive IR-ufSSFP parameter maps were corrected using elastic image registration. Furthermore, dynamic relaxometry oxygen wash-in and wash-out scans were performed in one volunteer. From this, T1 -related wash-in and wash-out time constants (τwi , τwo ) were calculated voxel-wise on registered maps using an exponential fitting model. RESULTS: For healthy lung, observed T1 values were 1399 ± 77 and 1290 ± 76 ms under normoxic and hyperoxic conditions, respectively. Oxygen-related reduction of T1 was statistically significant in every volunteer. No statistically significant change, however, was observed in T2, with normoxic and hyperoxic T2 values of 55 ± 16 and 56 ± 17 ms, respectively. The observed average τwi was 87.0 ± 28.7 seconds, whereas the average τwo was 73.5 ± 21.6 seconds. CONCLUSION: IR-ufSSFP allows fast, steady-state, and dynamic oxygen-dependent relaxometry of the human lung. Magn Reson Med 79:839-845, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Algoritmos , Suspensão da Respiração , Estudos de Viabilidade , Humanos , Processamento de Imagem Assistida por Computador/métodos , Oxigênio/metabolismo
19.
J Magn Reson Imaging ; 48(1): 48-57, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29297607

RESUMO

BACKGROUND: Lung perfusion MRI after i.v. gadolinium (Gd) contrast administration is commonly based on spoiled gradient-echo acquisitions, such as volume-interpolated breath-hold examinations (VIBE), suffering from low signal-to-noise in the parenchyma. PURPOSE: To investigate the lung signal enhancement ratio (SER) with ultra-fast steady-state free precession (ufSSFP) after Gd-administration. STUDY TYPE: Retrospective. SUBJECTS: Ten subjects with healthy lungs; nine patients with pulmonary diseases (chronic obstructive pulmonary disease [COPD], lung cancer, pulmonary fibrosis, lung contusion). FIELD STRENGTH/SEQUENCE: VIBE and ufSSFP imaging of the chest was performed at 1.5T before and 3 minutes after i.v. gadobenate dimeglumine. ASSESSMENT: A workflow including deformable image registration and median filtering was used to compute 3D SER maps. SER was analyzed in the lung, blood pool, liver, muscles, and fat. The artifacts were assessed by a radiologist. In the COPD patients, ufSSFP-SER was compared to 99m Tc-MAA-SPECT/CT by visual scoring of lung enhancement deficits. STATISTICAL TESTS: Mean signal, standard deviation (SD), intersubject SD, and coefficient of variation (CV) were calculated for SER. Statistical significance of differences in signal and artifacts were determined using Wilcoxon signed-rank paired test. Intermodality agreement between ufSSFP-SER and SPECT/CT was calculated by Cohen's kappa (κq ). RESULTS: In healthy lungs, ufSSFP-SER (99% ± 23%, mean ± pooled intrasubject SD, CV = 23%) was significantly higher (P < 10-3 ) and more homogeneous (P < 10-3 ) than VIBE (47% ± 26%, CV = 57%). UfSSFP-SER was significantly higher (P < 10-3 ) for the lungs (99% ± 9%, mean ± intersubject SD) than for the blood (81% ± 7%) and other tissues (liver 33% ± 8%, muscle 26% ± 5%, fat 2% ± 1%). In the lung ufSSFP-SER exhibits homogeneity on iso-gravitational planes, and an anterior-posterior gradient. In COPD patients, ufSSFP-SER was reduced and less homogeneous compared to the control group (73% ± 33%, mean ± pooled intrasubject SD, CV = 42%). ufSSFP-SER had moderate intermodality agreement with SPECT/CT (κq = 0.64). DATA CONCLUSION: UfSSFP-SER of the lung is a rapid and simple method. Our preliminary data show plausible results in different pulmonary diseases, motivating further evaluation in larger cohorts. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.


Assuntos
Gadolínio/química , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adulto , Idoso , Artefatos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Pneumopatias/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Fibrose Pulmonar/diagnóstico por imagem , Reprodutibilidade dos Testes , Respiração , Estudos Retrospectivos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único
20.
Eur Respir J ; 50(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29217601

RESUMO

Lung function tests are commonly used to monitor lung disease in cystic fibrosis (CF). While practical, they cannot locate the exact origin of functional impairment. Contemporary magnetic resonance imaging (MRI) techniques provide information on the location of disease but the need for contrast agents constrains their repeated application. We examined the correlation between functional MRI, performed without administration of contrast agent, and lung clearance index (LCI) from nitrogen multiple-breath washout (N2-MBW).40 children with CF (median (range) age 12.0 (6-18) years) and 12 healthy age-matched controls underwent functional and structural MRI and lung function tests on the same day. Functional MRI provided semiquantitative measures of perfusion (RQ) and ventilation (RFV) impairment as percentages of affected lung volume. Morphological MRI was evaluated using CF-specific scores. LCI measured global ventilation inhomogeneity.MRI detected functional impairment in CF: RFV 19-38% and RQ 16-35%. RFV and RQ correlated strongly with LCI (r=0.76, p<0.0001 and r=0.85, p<0.0001, respectively), as did total morphology score (r=0.81, p<0.0001). All indices differed significantly between patients with CF and healthy controls (p<0.001).Noninvasive functional MRI is a promising method to detect and visualise perfusion and ventilation impairment in CF without the need for contrast agents.


Assuntos
Fibrose Cística/diagnóstico por imagem , Fibrose Cística/fisiopatologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pletismografia , Estudos Prospectivos , Espirometria , Suíça , Volume de Ventilação Pulmonar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA