RESUMO
Waste treatment plants (WTPs) often generate odours that may cause nuisance to citizens living nearby. In general, people are becoming more sensitive to environmental issues, and particularly to odour pollution. Instrumental Odour Monitoring Systems (IOMSs) represent an emerging tool for continuous odour measurement and real-time identification of odour peaks, which can provide useful information about the process operation and indicate the occurrence of anomalous conditions likely to cause odour events in the surrounding territories. This paper describes the implementation of two IOMSs at the fenceline of a WTP, focusing on the definition of a specific experimental protocol and data processing procedure for dealing with the interferences of humidity and temperature affecting sensors' responses. Different approaches for data processing were compared and the optimal one was selected based on field performance testing. The humidity compensation model developed proved to be effective, bringing the IOMS classification accuracy above 95%. Also, the adoption of a class-specific regression model compared to a global regression model resulted in an odour quantification capability comparable with those of the reference method (i.e., dynamic olfactometry). Lastly, the validated models were used to process the monitoring data over a period of about one year.
Assuntos
Monitoramento Ambiental , Odorantes , Odorantes/análise , Monitoramento Ambiental/métodos , Umidade , Humanos , Temperatura , Gerenciamento de Resíduos/métodos , Olfatometria/métodosRESUMO
OBJECTIVE: To evaluate the accuracy of a new electronic nose to recognize prostate cancer in urine samples. METHODS: A blind, prospective study on consecutive patients was designed. Overall, 174 subjects were included in the study: 88 (50.6%) in prostate cancer group, and 86 (49.4%) in control group. Electronic nose performance for prostate cancer was assessed using sensitivity and specificity. The diagnostic accuracy of electronic nose was reported as area under the receiver operating characteristic curve. RESULTS: The electronic nose in the study population reached a sensitivity 85.2% (95% confidence interval 76.1-91.9; 13 false negatives out of 88), a specificity 79.1% (95% confidence interval 69.0-87.1; 18 false positives out of 86). The accuracy of the electronic nose represented as area under the receiver operating characteristic curve 0.821 (95% confidence interval 0.764-0.879). CONCLUSIONS: The diagnostic accuracy of electronic nose for recognizing prostate cancer in urine samples is high, promising and susceptible to supplemental improvement. Additionally, further studies will be necessary to design a clinical trial to validate electronic nose application in diagnostic prostate cancer nomograms.
Assuntos
Nariz Eletrônico , Neoplasias da Próstata , Humanos , Masculino , Estudos Prospectivos , Próstata , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Curva ROCRESUMO
In recent years, electronic noses, or more generally Instrumental Odor Monitoring Systems (IOMS), have aroused increasing interest in the field of environmental monitoring. One of the most interesting applications of these instruments is the real-time estimation of the odor concentration at plant fencelines to continuously monitor odor emissions and identify anomalous conditions. In this type of application, it is possible to setting a "warning" threshold, enabling the continuous check of proper functioning of the plant and sudden intervention in case of malfunctions, preventing, at the same time, the risk of odor events at the receptors. For this purpose, it is necessary to provide a continuous, fast and reliable measurement of the odor concentration, which is nowadays one of the main challenges of this technology. In this context, this work proposes the development of a quantification model for quantifying odors detected at the fenceline of a landfill characterized by very different odor fingerprints. A double-step quantification model, firstly identifying the different odor classes to which the ambient air monitored at the fenceline by the IOMS belong to, and then developing different specific PLS regression models for each of the odor classes identified, was developed. The results of the proposed quantification model were compared to the ones obtained developing a "global" quantification model, which implements the regression on the globality of the training set, without differentiating between the odor classes. Then, they were further evaluated by comparison with the odor events detected at the sensitive receptor by another electronic nose. Moreover, the combined evaluation of the odor events at the plant fenceline and the receptor, respectively, together with the meteorological data highlighted the need of identifying variable warning thresholds for the odor concentrations at the fenceline according to effectively account for meteorological conditions and produce an output that is more correlated with the probability that an odor is perceived outside of the plant.
RESUMO
In December 2019, a number of subjects presenting with an unexplained pneumonia-like illness were suspected to have a link to a seafood market in Wuhan, China. Subsequently, this illness was identified as the 2019-novel coronavirus (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the World Committee on Virus Classification. Since its initial identification, the virus has rapidly sperad across the globe, posing an extraordinary challenge for the medical community. Currently, the Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) is considered the most reliable method for diagnosing SARS-CoV-2. This procedure involves collecting oro-pharyngeal or nasopharyngeal swabs from individuals. Nevertheless, for the early detection of low viral loads, a more sensitive technique, such as droplet digital PCR (ddPCR), has been suggested. Despite the high effectiveness of RT-PCR, there is increasing interest in utilizing highly trained dogs and electronic noses (eNoses) as alternative methods for screening asymptomatic individuals for SARS-CoV-2. These dogs and eNoses have demonstrated high sensitivity and can detect volatile organic compounds (VOCs), enabling them to distinguish between COVID-19 positive and negative individuals. This manuscript recapitulates the potential, advantages, and limitations of employing trained dogs and eNoses for the screening and control of SARS-CoV-2.
Assuntos
COVID-19 , Nariz Eletrônico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/virologia , Animais , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Cães , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/análise , Teste para COVID-19/métodos , Cães Trabalhadores , Teste de Ácido Nucleico para COVID-19/métodosRESUMO
Introduction: Prostate cancer (PCa) is known for its highly diverse clinical behavior, ranging from low-risk, slow-growing tumors to aggressive and life-threatening forms. To avoid over-treatment of low-risk PCa patients, it would be very important prior to any therapeutic intervention to appropriately classify subjects based on tumor aggressiveness. Unfortunately, there is currently no reliable test available for this purpose. The aim of the present study was to evaluate the ability of risk stratification of PCa subjects using an electronic nose (eNose) detecting PCa-specific volatile organic compounds (VOCs) in urine samples. Methods: The study involved 120 participants who underwent diagnostic prostate biopsy followed by robot assisted radical prostatectomy (RARP). PCa risk was categorized as low, intermediate, or high based on the D'Amico risk classification and the pathological grade (PG) assessed after RARP. The eNose's ability to categorize subjects for PCa risk stratification was evaluated based on accuracy and recall metrics. Results: The study population comprised 120 participants. When comparing eNose predictions with PG an accuracy of 79.2% (95%CI 70.8 - 86%) was found, while an accuracy of 74.2% (95%CI 65.4 - 81.7%) was found when compared to D'Amico risk classification system. Additionally, if compared low- versus -intermediate-/high-risk PCa, the eNose achieved an accuracy of 87.5% (95%CI 80.2-92.8%) based on PG or 90.8% (95%CI 84.2-95.3%) based on D'Amico risk classification. However, when using low-/-intermediate versus -high-risk PCa for PG, the accuracy was found to be 91.7% (95%CI 85.2-95.9%). Finally, an accuracy of 80.8% (95%CI72.6-87.4%) was found when compared with D'Amico risk classification. Discussion: The findings of this study indicate that eNose may represent a valid alternative not only for early and non-invasive diagnosis of PCa, but also to categorize patients based on tumor aggressiveness. Further studies including a wider sample population will be necessary to confirm the potential clinical impact of this new technology.
RESUMO
This paper proposes a novel approach for the real-time monitoring of odour emissions from a WasteWater Treatment Plant (WWTP) using an Instrumental Odour Monitoring System (IOMS). The plant is characterized by unpredictable odour peaks at its arrival tank (AT), generating nuisance and complaints in the population living nearby the plant. Odour peaks are most likely due to the conferment of non-identified and malodorous wastewaters coming from various industrial activities. Due to the high variability of sources collecting their wastewaters to the WWTP, a new methodology to train the IOMS, based on the use of a one-class classifier (OCC), has been exploited. The OCC enables to detect deviations from a "Normal Operating Region" (NOR), defined as to include odour concentrations levels unlikely to cause nuisance in the citizenship. Such deviations from the NOR thus should be representative of the odour peaks. The results obtained prove that the IOMS is able to detect real-time alterations of odour emissions from the AT with an accuracy on independent validation data of about 90% (CI95% 55-100%). This ability of detecting anomalous conditions at the AT of the WWTP allowed the targeted withdrawal of liquid and gas samples in correspondence of the odour peaks, then subjected to further analyses that in turn enabled to investigate their origin and take proper counteractions to mitigate the WWTP odour impact.
RESUMO
Diagnostic protocol for prostate cancer (KP) is affected by poor accuracy and high false-positive rate. The most promising innovative approach is based on urine analysis by electronic noses (ENs), highlighting a specific correlation between urine alteration and KP presence. Although EN could be exploited to develop non-invasive KP diagnostic tools, no study has already introduced EN into clinical practice, most probably because of drift issues that hinder EN scaling up from research objects to large-scale diagnostic devices. This study, proposing an EN for non-invasive KP detection, describes the data processing protocol applied to a urine headspace dataset acquired over 9 months, comprising 81 patients with KP and 41 controls, for compensating the drift. It proved effective in mitigating drift on 1-year-old sensors by restoring accuracy from 55% up to 80%, achieved by new sensors not subjected to drift. The model achieved, on double-blind validation, a balanced accuracy of 76.2% (CI95% 51.9-92.3).
RESUMO
Background: Non-invasive, bedside diagnostic tools are extremely important for tailo ring the management of respiratory failure patients. The use of electronic noses (ENs) for exhaled breath analysis has the potential to provide useful information for phenotyping different respiratory disorders and improving diagnosis, but their application in respiratory failure patients remains a challenge. We developed a novel measurement apparatus for analysing exhaled breath in such patients. Methods: The breath sampling apparatus uses hospital medical air and oxygen pipeline systems to control the fraction of inspired oxygen and prevent contamination of exhaled gas from ambient Volatile Organic Compounds (VOCs) It is designed to minimise the dead space and respiratory load imposed on patients. Breath odour fingerprints were assessed using a commercial EN with custom MOX sensors. We carried out a feasibility study on 33 SARS-CoV-2 patients (25 with respiratory failure and 8 asymptomatic) and 22 controls to gather data on tolerability and for a preliminary assessment of sensitivity and specificity. The most significant features for the discrimination between breath-odour fingerprints from respiratory failure patients and controls were identified using the Boruta algorithm and then implemented in the development of a support vector machine (SVM) classification model. Results: The novel sampling system was well-tolerated by all patients. The SVM differentiated between respiratory failure patients and controls with an accuracy of 0.81 (area under the ROC curve) and a sensitivity and specificity of 0.920 and 0.682, respectively. The selected features were significantly different in SARS-CoV-2 patients with respiratory failure versus controls and asymptomatic SARS-CoV-2 patients (p < 0.001 and 0.046, respectively). Conclusions: the developed system is suitable for the collection of exhaled breath samples from respiratory failure patients. Our preliminary results suggest that breath-odour fingerprints may be sensitive markers of lung disease severity and aetiology.
RESUMO
More than one million new cases of prostate cancer (PCa) were reported worldwide in 2020, and a significant increase of PCa incidence up to 2040 is estimated. Despite potential treatability in early stages, PCa diagnosis is challenging because of late symptoms' onset and limits of current screening procedures. It has been now accepted that cell transformation leads to release of volatile organic compounds in biologic fluids, including urine. Thus, several studies proposed the possibility to develop new diagnostic tools based on urine analysis. Among these, electronic noses (eNoses) represent one of the most promising devices, because of their potential to provide a non-invasive diagnosis. Here we describe the approach aimed at defining the experimental protocol for eNose application for PCa diagnosis. Our research investigates effects of sample preparation and analysis on eNose responses and repeatability. The dependence of eNose diagnostic performance on urine portion analysed, techniques involved for extracting urine volatiles and conditioning temperature were analysed. 192 subjects (132 PCa patients and 60 controls) were involved. The developed experimental protocol has resulted in accuracy, sensitivity and specificity of 83% (CI95% 77-89), 82% (CI95% 73-88) and 87% (CI95% 75-94), respectively. Our findings define eNoses as valuable diagnostic tool allowing rapid and non-invasive PCa diagnosis.
Assuntos
Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Urina/química , Idoso , Idoso de 80 Anos ou mais , Nariz Eletrônico , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/urinaRESUMO
Cancer is one of the major causes of mortality worldwide and its already large burden is projected to increase significantly in the near future with a predicted 22 million new cancer cases and 13 million cancer-related deaths occurring annually by 2030. Unfortunately, current procedures for diagnosis are characterized by low diagnostic accuracies. Given the proved correlation between cancer presence and alterations of biological fluid composition, many researchers suggested their characterization to improve cancer detection at early stages. This paper reviews the information that can be found in the scientific literature, regarding the correlation of different cancer forms with the presence of specific metabolites in human urine, in a schematic and easily interpretable form, because of the huge amount of relevant literature. The originality of this paper relies on the attempt to point out the odor properties of such metabolites, and thus to highlight the correlation between urine odor alterations and cancer presence, which is proven by recent literature suggesting the analysis of urine odor for diagnostic purposes. This investigation aims to evaluate the possibility to compare the results of studies based on different approaches to be able in the future to identify those compounds responsible for urine odor alteration.
RESUMO
Prostate cancer is the second most common cause of cancer death among men. It is an asymptomatic and slow growing tumour, which starts occurring in young men, but can be detected only around the age of 40–50. Although its long latency period and potential curability make prostate cancer a perfect candidate for screening programs, the current procedure lacks in specificity. Researchers are rising to the challenge of developing innovative tools able of detecting the disease during its early stage that is the most curable. In recent years, the interest in characterisation of biological fluids aimed at the identification of tumour-specific compounds has increased significantly, since cell neoplastic transformation causes metabolic alterations leading to volatile organic compounds release. In the scientific literature, different approaches have been proposed. Many studies focus on the identification of a cancer-characteristic “odour fingerprint” emanated from biological samples through the application of sensorial or senso-instrumental analyses, others suggest a chemical characterisation of biological fluids with the aim of identifying prostate cancer (PCa)-specific biomarkers. This paper focuses on the review of literary studies in the field of prostate cancer diagnosis, in order to provide an overview of innovative methods based on the analysis of urine, thereby comparing them with the traditional diagnostic procedures.