Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
EMBO J ; 42(15): e112934, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708295

RESUMO

N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.


Assuntos
Cnidários , Animais , Genômica , Cinética , Epigenômica , Cognição
2.
Genome Res ; 34(3): 498-513, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508693

RESUMO

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Assuntos
Genoma , Hidrozoários , Animais , Hidrozoários/genética , Evolução Molecular , Transcriptoma , Células-Tronco/metabolismo , Masculino , Filogenia , Análise de Célula Única/métodos
3.
Genome Res ; 33(2): 283-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639202

RESUMO

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Cromossomos , Epigênese Genética
4.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161920

RESUMO

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Assuntos
Hidrozoários , Imunoglobulinas , Complexo Principal de Histocompatibilidade , Animais , Hidrozoários/genética , Hidrozoários/imunologia , Imunoglobulinas/química , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios Proteicos , Tirosina/química , Tirosina/genética
5.
Proteomics ; : e2300397, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329168

RESUMO

This Dataset Brief describes the computational prediction of protein structures for the ctenophore Mnemiopsis leidyi. Here, we report the proteome-scale generation of 15,333 protein structure predictions using AlphaFold, as well as an updated implementation of publicly available search, manipulation, and visualization tools for these protein structure predictions through the Mnemiopsis Genome Project Portal (https://research.nhgri.nih.gov/mnemiopsis). The utility of these predictions is demonstrated by highlighting comparisons to experimentally determined structures for the light-sensitive protein mnemiopsin 1 and the ionotropic glutamate receptor (iGluR). The application of these novel protein structure prediction methods will serve to further position non-bilaterian species such as Mnemiopsis as powerful model systems for the study of early animal evolution and human health.

6.
Mol Psychiatry ; 28(2): 792-800, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36380233

RESUMO

Despite advances in identifying rare and common genetic variants conferring risk for ADHD, the lack of a transcriptomic understanding of cortico-striatal brain circuitry has stymied a molecular mechanistic understanding of this disorder. To address this gap, we mapped the transcriptome of the caudate nucleus and anterior cingulate cortex in post-mortem tissue from 60 individuals with and without ADHD. Significant differential expression of genes was found in the anterior cingulate cortex and, to a lesser extent, the caudate. Significant downregulation emerged of neurotransmitter gene pathways, particularly glutamatergic, in keeping with models that implicate these neurotransmitters in ADHD. Consistent with the genetic overlap between mental disorders, correlations were found between the cortico-striatal transcriptomic changes seen in ADHD and those seen in other neurodevelopmental and mood disorders. This transcriptomic evidence points to cortico-striatal neurotransmitter anomalies in the pathogenesis of ADHD, consistent with current models of the disorder.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transcriptoma/genética , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Corpo Estriado/metabolismo , Encéfalo/metabolismo
7.
BMC Biol ; 21(1): 32, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782149

RESUMO

BACKGROUND: Sex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. RESULTS: In this study, we generated a linkage map of the genome of the colonial cnidarian Hydractinia symbiolongicarpus and used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number in Hydractinia is n = 15. CONCLUSIONS: These findings establish Hydractinia as a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes.


Assuntos
Hidrozoários , Cromossomos Sexuais , Masculino , Feminino , Animais , Cromossomos Sexuais/genética , Mapeamento Cromossômico , Cromossomo Y/genética , Hidrozoários/genética , Evolução Molecular
8.
Mol Biol Evol ; 38(10): 4628-4633, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34048573

RESUMO

To address the void in the availability of high-quality proteomic data traversing the animal tree, we have implemented a pipeline for generating de novo assemblies based on publicly available data from the NCBI Sequence Read Archive, yielding a comprehensive collection of proteomes from 100 species spanning 21 animal phyla. We have also created the Animal Proteome Database (AniProtDB), a resource providing open access to this collection of high-quality metazoan proteomes, along with information on predicted proteins and protein domains for each taxonomic classification and the ability to perform sequence similarity searches against all proteomes generated using this pipeline. This solution vastly increases the utility of these data by removing the barrier to access for research groups who do not have the expertise or resources to generate these data themselves and enables the use of data from nontraditional research organisms that have the potential to address key questions in biomedicine.


Assuntos
Proteoma , Proteômica , Animais , Bases de Dados Factuais , Genômica , Análise de Sequência
9.
Dev Biol ; 428(1): 224-231, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28601529

RESUMO

The function of Notch signaling was previously studied in two cnidarians, Hydra and Nematostella, representing the lineages Hydrozoa and Anthozoa, respectively. Using pharmacological inhibition in Hydra and a combination of pharmacological and genetic approaches in Nematostella, it was shown in both animals that Notch is required for tentacle morphogenesis and for late stages of stinging cell maturation. Surprisingly, a role for Notch in neural development, which is well documented in bilaterians, was evident in embryonic Nematostella but not in adult Hydra. Adult neurogenesis in the latter seemed to be unaffected by DAPT, a drug that inhibits Notch signaling. To address this apparent discrepancy, we studied the role of Notch in Hydractinia echinata, an additional hydrozoan, in all life stages. Using CRISPR-Cas9 mediated mutagenesis, transgenesis, and pharmacological interference we show that Notch is dispensable for Hydractinia normal neurogenesis in all life stages but is required for the maturation of stinging cells and for tentacle morphogenesis. Our results are consistent with a conserved role for Notch in morphogenesis and nematogenesis across Cnidaria, and a lineage-specific loss of Notch dependence in neurogenesis in hydrozoans.


Assuntos
Extremidades/embriologia , Hidrozoários/embriologia , Neurogênese/fisiologia , Receptores Notch/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Diaminas/farmacologia , Feminino , Hidrozoários/genética , Hibridização In Situ , Masculino , Mutagênese/genética , Neurogênese/genética , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Transdução de Sinais/genética , Tiazóis/farmacologia
10.
BMC Genomics ; 19(1): 649, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176818

RESUMO

BACKGROUND: Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS: Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS: This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Introdução de Genes , Hidrozoários/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Vetores Genéticos , Recombinação Homóloga , Hidrozoários/crescimento & desenvolvimento , Transgenes
11.
Mol Biol Evol ; 34(6): 1543-1546, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333216

RESUMO

The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite.


Assuntos
Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Biologia Computacional , Filogenia , Software
12.
Mol Reprod Dev ; 84(11): 1218-1229, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29068507

RESUMO

The maternal-zygotic transition (MZT) describes the developmental reprogramming of gene expression marked by the degradation of maternally supplied gene products and activation of the zygotic genome. While the timing and duration of the MZT vary among taxa, little is known about early-stage transcriptional dynamics in the non-bilaterian phylum Ctenophora. We sought to better understand the extent of maternal mRNA loading and subsequent differential transcript abundance during the earliest stages of development by performing comprehensive RNA-sequencing-based analyses of mRNA abundance in single- and eight-cell stage embryos in the lobate ctenophore Mnemiopsis leidyi. We found 1,908 contigs with significant differential abundance between single- and eight-cell stages, of which 1,208 contigs were more abundant at the single-cell stage and 700 contigs were more abundant at the eight-cell stage. Of the differentially abundant contigs, 267 were exclusively present in the eight-cell samples, providing strong evidence that both the MZT and zygotic genome activation (ZGA) have commenced by the eight-cell stage. Many highly abundant transcripts encode genes involved in molecular mechanisms critical to the MZT, such as maternal transcript degradation, serine/threonine kinase activity, and chromatin remodeling. Our results suggest that chromosomal restructuring, which is critical to ZGA and the initiation of transcriptional regulation necessary for normal development, begins by the third cleavage within 1.5 hr post-fertilization in M. leidyi.


Assuntos
Blastômeros/metabolismo , Ctenóforos/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Zigoto/metabolismo , Animais , Blastômeros/citologia , Ctenóforos/genética , Embrião não Mamífero/citologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Zigoto/citologia
13.
Nucleic Acids Res ; 43(8): 3886-98, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25813044

RESUMO

MicroRNAs (miRNAs) regulate gene expression by binding to partially complementary sequences on target mRNA transcripts, thereby causing their degradation, deadenylation, or inhibiting their translation. Genomic variants can alter miRNA regulation by modifying miRNA target sites, and multiple human disease phenotypes have been linked to such miRNA target site variants (miR-TSVs). However, systematic genome-wide identification of functional miR-TSVs is difficult due to high false positive rates; functional miRNA recognition sequences can be as short as six nucleotides, with the human genome encoding thousands of miRNAs. Furthermore, while large-scale clinical genomic data sets are becoming increasingly commonplace, existing miR-TSV prediction methods are not designed to analyze these data. Here, we present an open-source tool called SubmiRine that is designed to perform efficient miR-TSV prediction systematically on variants identified in novel clinical genomic data sets. Most importantly, SubmiRine allows for the prioritization of predicted miR-TSVs according to their relative probability of being functional. We present the results of SubmiRine using integrated clinical genomic data from a large-scale cohort study on chronic obstructive pulmonary disease (COPD), making a number of high-scoring, novel miR-TSV predictions. We also demonstrate SubmiRine's ability to predict and prioritize known miR-TSVs that have undergone experimental validation in previous studies.


Assuntos
Regiões 3' não Traduzidas , MicroRNAs/metabolismo , Software , Sítios de Ligação , Genômica , Humanos , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética
14.
Nucleic Acids Res ; 42(7): 4257-69, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464997

RESUMO

Retroviruses integrate into the host genome in patterns specific to each virus. Understanding the causes of these patterns can provide insight into viral integration mechanisms, pathology and genome evolution, and is critical to the development of safe gene therapy vectors. We generated murine leukemia virus integrations in human HepG2 and K562 cells and subjected them to second-generation sequencing, using a DNA barcoding technique that allowed us to quantify independent integration events. We characterized >3,700,000 unique integration events in two ENCODE-characterized cell lines. We find that integrations were most highly enriched in a subset of strong enhancers and active promoters. In both cell types, approximately half the integrations were found in <2% of the genome, demonstrating genomic influences even narrower than previously believed. The integration pattern of murine leukemia virus appears to be largely driven by regions that have high enrichment for multiple marks of active chromatin; the combination of histone marks present was sufficient to explain why some strong enhancers were more prone to integration than others. The approach we used is applicable to analyzing the integration pattern of any exogenous element and could be a valuable preclinical screen to evaluate the safety of gene therapy vectors.


Assuntos
Sítios de Ligação Microbiológicos , Elementos Facilitadores Genéticos , Vírus da Leucemia Murina de Moloney/fisiologia , Regiões Promotoras Genéticas , Integração Viral , Linhagem Celular Tumoral , Humanos , Células K562
15.
BMC Evol Biol ; 14: 212, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25281000

RESUMO

BACKGROUND: The recent expansion of whole-genome sequence data available from diverse animal lineages provides an opportunity to investigate the evolutionary origins of specific classes of human disease genes. Previous studies have observed that human disease genes are of particularly ancient origin. While this suggests that many animal species have the potential to serve as feasible models for research on genes responsible for human disease, it is unclear whether this pattern has meaningful implications and whether it prevails for every class of human disease. RESULTS: We used a comparative genomics approach encompassing a broad phylogenetic range of animals with sequenced genomes to determine the evolutionary patterns exhibited by human genes associated with different classes of disease. Our results support previous claims that most human disease genes are of ancient origin but, more importantly, we also demonstrate that several specific disease classes have a significantly large proportion of genes that emerged relatively recently within the metazoans and/or vertebrates. An independent assessment of the synonymous to non-synonymous substitution rates of human disease genes found in mammals reveals that disease classes that arose more recently also display unexpected rates of purifying selection between their mammalian and human counterparts. CONCLUSIONS: Our results reveal the heterogeneity underlying the evolutionary origins of (and selective pressures on) different classes of human disease genes. For example, some disease gene classes appear to be of uncommonly recent (i.e., vertebrate-specific) origin and, as a whole, have been evolving at a faster rate within mammals than the majority of disease classes having more ancient origins. The novel patterns that we have identified may provide new insight into cases where studies using traditional animal models were unable to produce results that translated to humans. Conversely, we note that the larger set of disease classes do have ancient origins, suggesting that many non-traditional animal models have the potential to be useful for studying many human disease genes. Taken together, these findings emphasize why model organism selection should be done on a disease-by-disease basis, with evolutionary profiles in mind.


Assuntos
Evolução Biológica , Modelos Animais de Doenças , Doença/genética , Animais , Humanos , Modelos Genéticos , Especificidade da Espécie
16.
BMC Genomics ; 15: 316, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24773765

RESUMO

BACKGROUND: Mnemiopsis leidyi is a ctenophore native to the coastal waters of the western Atlantic Ocean. A number of studies on Mnemiopsis have led to a better understanding of many key biological processes, and these studies have contributed to the emergence of Mnemiopsis as an important model for evolutionary and developmental studies. Recently, we sequenced, assembled, annotated, and performed a preliminary analysis on the 150-megabase genome of the ctenophore, Mnemiopsis. This sequencing effort has produced the first set of whole-genome sequencing data on any ctenophore species and is amongst the first wave of projects to sequence an animal genome de novo solely using next-generation sequencing technologies. DESCRIPTION: The Mnemiopsis Genome Project Portal (http://research.nhgri.nih.gov/mnemiopsis/) is intended both as a resource for obtaining genomic information on Mnemiopsis through an intuitive and easy-to-use interface and as a model for developing customized Web portals that enable access to genomic data. The scope of data available through this Portal goes well beyond the sequence data available through GenBank, providing key biological information not available elsewhere, such as pathway and protein domain analyses; it also features a customized genome browser for data visualization. CONCLUSIONS: We expect that the availability of these data will allow investigators to advance their own research projects aimed at understanding phylogenetic diversity and the evolution of proteins that play a fundamental role in metazoan development. The overall approach taken in the development of this Web site can serve as a viable model for disseminating data from whole-genome sequencing projects, framed in a way that best-serves the specific needs of the scientific community.


Assuntos
Ctenóforos/genética , Genoma , Internet , Animais
17.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502060

RESUMO

Conserved noncoding elements (CNEs) are DNA sequences located outside of protein-coding genes that can remain under purifying selection for up to hundreds of millions of years. Studies in vertebrate genomes have revealed that most CNEs carry out regulatory functions. Notably, many of them are enhancers that control the expression of homeodomain transcription factors and other genes that play crucial roles in embryonic development. To further our knowledge of CNEs in other parts of the animal tree, we conducted a large-scale characterization of CNEs in more than 50 genomes from three of the main branches of the metazoan tree: Cnidaria, Mollusca, and Arthropoda. We identified hundreds of thousands of CNEs and reconstructed the temporal dynamics of their appearance in each lineage, as well as determining their spatial distribution across genomes. We show that CNEs evolve repeatedly around the same genes across the Metazoa, including around homeodomain genes and other transcription factors; they also evolve repeatedly around genes involved in neural development. We also show that transposons are a major source of CNEs, confirming previous observations from vertebrates and suggesting that they have played a major role in wiring developmental gene regulatory mechanisms since the dawn of animal evolution.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Vertebrados , Animais , Sequência Conservada/genética , Vertebrados/genética , Sequência de Bases , Fatores de Transcrição/genética , Evolução Molecular
18.
BMC Biol ; 10: 107, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23259493

RESUMO

BACKGROUND: Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. RESULTS: The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. CONCLUSIONS: This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilaterian animal.


Assuntos
Ctenóforos/citologia , Ctenóforos/genética , Evolução Molecular , Regulação da Expressão Gênica , Genoma/genética , Proteínas Luminescentes/genética , Opsinas/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Ctenóforos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Transdução de Sinal Luminoso/efeitos da radiação , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Opsinas/química , Opsinas/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Análise Espectral
19.
Cell Rep ; 42(7): 112687, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37392741

RESUMO

Cell fate stability is essential to maintaining "law and order" in complex animals. However, high stability comes at the cost of reduced plasticity and, by extension, poor regenerative ability. This evolutionary trade-off has resulted in most modern animals being rather simple and regenerative or complex and non-regenerative. The mechanisms mediating cellular plasticity and allowing for regeneration remain unknown. We show that signals emitted by senescent cells can destabilize the differentiated state of neighboring somatic cells, reprogramming them into stem cells that are capable of driving whole-body regeneration in the cnidarian Hydractinia symbiolongicarpus. Pharmacological or genetic inhibition of senescence prevents reprogramming and regeneration. Conversely, induction of transient ectopic senescence in a regenerative context results in supernumerary stem cells and faster regeneration. We propose that senescence signaling is an ancient mechanism mediating cellular plasticity. Understanding the senescence environment that promotes cellular reprogramming could provide an avenue to enhance regeneration.


Assuntos
Cnidários , Animais , Reprogramação Celular , Senescência Celular/genética , Transdução de Sinais , Células-Tronco
20.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37786714

RESUMO

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA