Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 142(25): 11084-11091, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32450694

RESUMO

Expanded helicenes are large, structurally flexible π-frameworks that can be viewed as building blocks for more complex chiral nanocarbons. Here we report a gram-scale synthesis of an alkyne-functionalized expanded [11]helicene and its single-step transformation into two structurally and functionally distinct types of macrocyclic derivatives: (1) a figure-eight dimer via alkyne metathesis (also gram scale) and (2) two arylene-bridged expanded helicenes via Zr-mediated, formal [2+2+n] cycloadditions. The phenylene-bridged helicene displays a substantially higher enantiomerization barrier (22.1 kcal/mol) than its helicene precursor (<11.9 kcal/mol), which makes this a promising strategy to access configurationally stable expanded helicenes. In contrast, the topologically distinct figure-eight retains the configurational lability of the helicene precursor. Despite its lability in solution, this compound forms homochiral single crystals. Here, the configuration is stabilized by an intricate network of two distinct yet interconnected helical superstructures. The enantiomerization mechanisms for all new compounds were probed using density functional theory, providing insight into the flexibility of the figure-eight and guidance for future synthetic modifications in pursuit of non-racemic macrocycles.


Assuntos
Compostos Macrocíclicos/química , Compostos Policíclicos/química , Compostos Macrocíclicos/síntese química , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; 59(12): 4770-4777, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31943648

RESUMO

A simple and efficient nitrile-directed meta-C-H olefination, acetoxylation, and iodination of biaryl compounds is reported. Compared to the previous approach of installing a complex U-shaped template to achieve a molecular U-turn and assemble the large-sized cyclophane transition state for the remote C-H activation, a synthetically useful phenyl nitrile functional group could also direct remote meta-C-H activation. This reaction provides a useful method for the modification of biaryl compounds because the nitrile group can be readily converted to amines, acids, amides, or other heterocycles. Notably, the remote meta-selectivity of biphenylnitriles could not be expected from previous results with a macrocyclophane nitrile template. DFT computational studies show that a ligand-containing Pd-Ag heterodimeric transition state (TS) favors the desired remote meta-selectivity. Control experiments demonstrate the directing effect of the nitrile group and exclude the possibility of non-directed meta-C-H activation. Substituted 2-pyridone ligands were found to be key in assisting the cleavage of the meta-C-H bond in the concerted metalation-deprotonation (CMD) process.


Assuntos
Compostos de Bifenilo/síntese química , Teoria da Densidade Funcional , Compostos de Bifenilo/química , Estrutura Molecular
3.
J Org Chem ; 83(23): 14786-14790, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30403854

RESUMO

The enantioselective Pd(II)-catalyzed γ-C-H arylation of picolinamides with a chiral BINOL phosphate ligand was explored using density functional theory (DFT). Enantioselectivity arises from attractive aryl-aryl interactions between the pseudoequatorial phenyl substituent of the substrate and the chiral BINOL phosphate ligand.

4.
J Am Chem Soc ; 139(51): 18500-18503, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29215885

RESUMO

A new tool for probing enantioselective reaction mechanisms is introduced. Monitoring the temporal change in product enantiomeric excess after addition of the opposite enantiomer of the ligand during the reaction provides a means of probing dynamic ligand exchange in enantioselective C-H iodination catalyzed by Pd with monoprotected amino acid ligands (MPAAs). This work has general potential to provide insights about the dynamics of catalyst and ligand molecularity and exchange.

5.
Nat Chem ; 12(4): 399-404, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32123338

RESUMO

Site-selective functionalization of C-H bonds will ultimately afford chemists transformative tools for editing and constructing complex molecular architectures. Towards this goal, it is essential to develop strategies to activate C-H bonds that are distal from a functional group. In this context, distinguishing remote C-H bonds on adjacent carbon atoms is an extraordinary challenge due to the lack of electronic or steric bias between the two positions. Herein, we report the design of a catalytic system leveraging a remote directing template and a transient norbornene mediator to selectively activate a previously inaccessible remote C-H bond that is one bond further away. The generality of this approach has been demonstrated with a range of heterocycles, including a complex anti-leukaemia agent and hydrocinnamic acid substrates.


Assuntos
Carbono/química , Hidrogênio/química , Isoquinolinas/química , Quinolinas/química , Catálise , Complexos de Coordenação/química , Estrutura Molecular , Norbornanos/química , Paládio/química
6.
Chem ; 5(9): 2461-2469, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32292833

RESUMO

A cornerstone of modern synthetic chemistry rests on the ability to manipulate the reactivity of a carbon center by rendering it either electrophilic or nucleophilic. However, accessing a similar reactivity spectrum with boron-based reagents has been significantly more challenging. While classical nucleophilic carbon-based reagents normally do not require steric protection, readily accessible, unprotected boron-based nucleophiles have not yet been realized. Herein, we demonstrate that the bench stable closo-hexaborate cluster anion can engage in a nucleophilic substitution reaction with a wide array of organic and main group electrophiles. The resulting molecules containing B‒C bonds can be further converted to tricoordinate boron species widely used in organic synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA