Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(D1): D882-D889, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31713622

RESUMO

The Encyclopedia of DNA Elements (ENCODE) is an ongoing collaborative research project aimed at identifying all the functional elements in the human and mouse genomes. Data generated by the ENCODE consortium are freely accessible at the ENCODE portal (https://www.encodeproject.org/), which is developed and maintained by the ENCODE Data Coordinating Center (DCC). Since the initial portal release in 2013, the ENCODE DCC has updated the portal to make ENCODE data more findable, accessible, interoperable and reusable. Here, we report on recent updates, including new ENCODE data and assays, ENCODE uniform data processing pipelines, new visualization tools, a dataset cart feature, unrestricted public access to ENCODE data on the cloud (Amazon Web Services open data registry, https://registry.opendata.aws/encode-project/) and more comprehensive tutorials and documentation.


Assuntos
DNA/genética , Bases de Dados Genéticas , Genoma Humano , Software , Animais , Genômica , Humanos , Camundongos
2.
Nucleic Acids Res ; 46(D1): D794-D801, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29126249

RESUMO

The Encyclopedia of DNA Elements (ENCODE) Data Coordinating Center has developed the ENCODE Portal database and website as the source for the data and metadata generated by the ENCODE Consortium. Two principles have motivated the design. First, experimental protocols, analytical procedures and the data themselves should be made publicly accessible through a coherent, web-based search and download interface. Second, the same interface should serve carefully curated metadata that record the provenance of the data and justify its interpretation in biological terms. Since its initial release in 2013 and in response to recommendations from consortium members and the wider community of scientists who use the Portal to access ENCODE data, the Portal has been regularly updated to better reflect these design principles. Here we report on these updates, including results from new experiments, uniformly-processed data from other projects, new visualization tools and more comprehensive metadata to describe experiments and analyses. Additionally, the Portal is now home to meta(data) from related projects including Genomics of Gene Regulation, Roadmap Epigenome Project, Model organism ENCODE (modENCODE) and modERN. The Portal now makes available over 13000 datasets and their accompanying metadata and can be accessed at: https://www.encodeproject.org/.


Assuntos
DNA/genética , Bases de Dados Genéticas , Componentes do Gene , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metadados , Animais , Caenorhabditis elegans/genética , Apresentação de Dados , Conjuntos de Dados como Assunto , Drosophila melanogaster/genética , Previsões , Genoma Humano , Humanos , Camundongos/genética , Interface Usuário-Computador
3.
Nat Med ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227443

RESUMO

Precision medicine has the potential to provide more accurate diagnosis, appropriate treatment and timely prevention strategies by considering patients' biological makeup. However, this cannot be realized without integrating clinical and omics data in a data-sharing framework that achieves large sample sizes. Systems that integrate clinical and genetic data from multiple sources are scarce due to their distinct data types, interoperability, security and data ownership issues. Here we present a secure framework that allows immutable storage, querying and analysis of clinical and genetic data using blockchain technology. Our platform allows clinical and genetic data to be harmonized by combining them under a unified framework. It supports combined genotype-phenotype queries and analysis, gives institutions control of their data and provides immutable user access logs, improving transparency into how and when health information is used. We demonstrate the value of our framework for precision medicine by creating genotype-phenotype cohorts and examining relationships within them. We show that combining data across institutions using our secure platform increases statistical power for rare disease analysis. By offering an integrated, secure and decentralized framework, we aim to enhance reproducibility and encourage broader participation from communities and patients in data sharing.

4.
Curr Protoc Bioinformatics ; 68(1): e89, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31751002

RESUMO

The Encyclopedia of DNA Elements (ENCODE) web portal hosts genomic data generated by the ENCODE Consortium, Genomics of Gene Regulation, The NIH Roadmap Epigenomics Consortium, and the modENCODE and modERN projects. The goal of the ENCODE project is to build a comprehensive map of the functional elements of the human and mouse genomes. Currently, the portal database stores over 500 TB of raw and processed data from over 15,000 experiments spanning assays that measure gene expression, DNA accessibility, DNA and RNA binding, DNA methylation, and 3D chromatin structure across numerous cell lines, tissue types, and differentiation states with selected genetic and molecular perturbations. The ENCODE portal provides unrestricted access to the aforementioned data and relevant metadata as a service to the scientific community. The metadata model captures the details of the experiments, raw and processed data files, and processing pipelines in human and machine-readable form and enables the user to search for specific data either using a web browser or programmatically via REST API. Furthermore, ENCODE data can be freely visualized or downloaded for additional analyses. © 2019 The Authors. Basic Protocol: Query the portal Support Protocol 1: Batch downloading Support Protocol 2: Using the cart to download files Support Protocol 3: Visualize data Alternate Protocol: Query building and programmatic access.


Assuntos
Cromatina/metabolismo , DNA/genética , Bases de Dados Genéticas , Epigenômica/métodos , Animais , Metilação de DNA , Genoma Humano , Humanos , Internet , Metadados , Camundongos , Software
6.
PLoS One ; 12(4): e0175310, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403240

RESUMO

The Encyclopedia of DNA elements (ENCODE) project is an ongoing collaborative effort to create a comprehensive catalog of functional elements initiated shortly after the completion of the Human Genome Project. The current database exceeds 6500 experiments across more than 450 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the H. sapiens and M. musculus genomes. All ENCODE experimental data, metadata, and associated computational analyses are submitted to the ENCODE Data Coordination Center (DCC) for validation, tracking, storage, unified processing, and distribution to community resources and the scientific community. As the volume of data increases, the identification and organization of experimental details becomes increasingly intricate and demands careful curation. The ENCODE DCC has created a general purpose software system, known as SnoVault, that supports metadata and file submission, a database used for metadata storage, web pages for displaying the metadata and a robust API for querying the metadata. The software is fully open-source, code and installation instructions can be found at: http://github.com/ENCODE-DCC/snovault/ (for the generic database) and http://github.com/ENCODE-DCC/encoded/ to store genomic data in the manner of ENCODE. The core database engine, SnoVault (which is completely independent of ENCODE, genomic data, or bioinformatic data) has been released as a separate Python package.


Assuntos
Bases de Dados Genéticas , Genômica/métodos , Metadados , Software , Animais , DNA/genética , Genoma , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA