Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Transplant ; 21(4): 1415-1426, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32483894

RESUMO

B cells have been implicated in transplant rejection via antibody-mediated mechanisms and more recently by presenting donor antigens to T cells. We have shown in patients with chronic antibody-mediated rejection that B cells control the indirect T cell alloresponses. To understand more about the role of B cells as antigen-presenting cells for CD4+ T cell with indirect allospecificity, B cells were depleted in C57BL/6 mice, using an anti-CD20 antibody, prior to receiving MHC class I-mismatched (Kd ) skin. The absence of B cells at the time of transplantation prolonged skin graft survival. To study the mechanisms behind this observation, T cells with indirect allospecificity were transferred in mice receiving a Kd skin transplant. T cell proliferation was markedly inhibited in the absence of recipient B cells, suggesting that B cells contribute to indirect pathway sensitization. Furthermore, we have shown that a possible way in which B cells present alloantigens is via acquisition of MHC-peptide complexes. Finally, we demonstrate that the addition of B cell depletion to the transfer of regulatory T cells (Tregs) with indirect alloresponse further prolonged skin graft survival. This study supports an important role for B cells in indirect T cell priming and further emphasizes the advantage of combination therapies in prolonging transplant survival.


Assuntos
Linfócitos B , Vesículas Extracelulares , Animais , Rejeição de Enxerto/etiologia , Humanos , Isoantígenos , Camundongos , Camundongos Endogâmicos C57BL , Transplante Homólogo
2.
Front Cell Dev Biol ; 8: 317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509778

RESUMO

Regulatory T cells (Tregs) are a subpopulation of CD4+ T cells with a fundamental role in maintaining immune homeostasis and inhibiting unwanted immune responses using several different mechanisms. Recently, the intercellular transfer of molecules between Tregs and their target cells has been shown via trogocytosis and the release of small extracellular vesicles (sEVs). In this study, CD4+CD25+CD127lo human Tregs were found to produce sEVs capable of inhibiting the proliferation of effector T cells (Teffs) in a dose dependent manner. These vesicles also modified the cytokine profile of Teffs leading to an increase in the production of IL-4 and IL-10 whilst simultaneously decreasing the levels of IL-6, IL-2, and IFNγ. MicroRNAs found enriched in the Treg EVs were indirectly linked to the changes in the cytokine profile observed. In a humanized mouse skin transplant model, human Treg derived EVs inhibited alloimmune-mediated skin tissue damage by limiting immune cell infiltration. Taken together, Treg sEVs may represent an exciting cell-free therapy to promote transplant survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA