Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2200252119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095212

RESUMO

In humans, the uterus undergoes a dramatic transformation to form an endometrial stroma-derived secretory tissue, termed decidua, during early pregnancy. The decidua secretes various factors that act in an autocrine/paracrine manner to promote stromal differentiation, facilitate maternal angiogenesis, and influence trophoblast differentiation and development, which are critical for the formation of a functional placenta. Here, we investigated the mechanisms by which decidual cells communicate with each other and with other cell types within the uterine milieu. We discovered that primary human endometrial stromal cells (HESCs) secrete extracellular vesicles (EVs) during decidualization and that this process is controlled by a conserved HIF2α-RAB27B pathway. Mass spectrometry revealed that the decidual EVs harbor a variety of protein cargo, including cell signaling molecules, growth modulators, metabolic regulators, and factors controlling endothelial cell expansion and remodeling. We tested the hypothesis that EVs secreted by the decidual cells mediate functional communications between various cell types within the uterus. We demonstrated that the internalization of EVs, specifically those carrying the glucose transporter 1 (GLUT1), promotes glucose uptake in recipient HESCs, supporting and advancing the decidualization program. Additionally, delivery of HESC-derived EVs into human endothelial cells stimulated their proliferation and led to enhanced vascular network formation. Strikingly, stromal EVs also promoted the differentiation of trophoblast stem cells into the extravillous trophoblast lineage. Collectively, these findings provide a deeper understanding of the pleiotropic roles played by EVs secreted by the decidual cells to ensure coordination of endometrial differentiation and angiogenesis with trophoblast function during the progressive phases of decidualization and placentation.


Assuntos
Decídua , Vesículas Extracelulares , Trofoblastos , Diferenciação Celular , Decídua/citologia , Decídua/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Vesículas Extracelulares/fisiologia , Feminino , Humanos , Neovascularização Fisiológica , Gravidez , Células Estromais/citologia , Células Estromais/fisiologia , Trofoblastos/citologia , Trofoblastos/fisiologia
3.
Mol Syst Biol ; 16(12): e10019, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33331138

RESUMO

Engineering biological organisms is a complex, challenging, and often slow process. Other engineering domains have addressed such challenges with a combination of standardization and automation, enabling a divide-and-conquer approach to complexity and greatly increasing productivity. For example, standardization and automation allow rapid and predictable translation of prototypes into fielded applications (e.g., "design for manufacturability"), simplify sharing and reuse of work between groups, and enable reliable outsourcing and integration of specialized subsystems. Although this approach has also been part of the vision of synthetic biology, almost since its very inception (Knight & Sussman, 1998), this vision still remains largely unrealized (Carbonell et al, 2019). Despite significant progress over the last two decades, which have for example allowed obtaining and editing DNA sequences in easier and cheaper ways, the full process of organism engineering is still typically rather slow, manual, and artisanal.


Assuntos
Engenharia Genética , Biologia Sintética
4.
Nat Chem Biol ; 14(11): 1043-1050, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30327560

RESUMO

Synthetic mRNA is an attractive vehicle for gene therapies because of its transient nature and improved safety profile over DNA. However, unlike DNA, broadly applicable methods to control expression from mRNA are lacking. Here we describe a platform for small-molecule-based regulation of expression from modified RNA (modRNA) and self-replicating RNA (replicon) delivered to mammalian cells. Specifically, we engineer small-molecule-responsive RNA binding proteins to control expression of proteins from RNA-encoded genetic circuits. Coupled with specific modRNA dosages or engineered elements from a replicon, including a subgenomic promoter library, we demonstrate the capability to externally regulate the timing and level of protein expression. These control mechanisms facilitate the construction of ON, OFF, and two-output switches, with potential therapeutic applications such as inducible cancer immunotherapies. These circuits, along with other synthetic networks that can be developed using these tools, will expand the utility of synthetic mRNA as a therapeutic modality.


Assuntos
Redes Reguladoras de Genes , Terapia Genética/métodos , Regiões Promotoras Genéticas , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , RNA/química , Animais , Linhagem Celular , Cricetinae , DNA/química , Biblioteca Gênica , Engenharia Genética , Células HEK293 , Humanos , Imunoterapia , Camundongos , RNA Interferente Pequeno/metabolismo , Biologia Sintética
5.
Nat Methods ; 12(11): 1051-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344044

RESUMO

We demonstrate that by altering the length of Cas9-associated guide RNA (gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.


Assuntos
Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/análise , Sítios de Ligação , Proteínas Associadas a CRISPR/genética , Citometria de Fluxo , Corantes Fluorescentes/análise , Deleção de Genes , Genes Reporter , Engenharia Genética/métodos , Vetores Genéticos , Genoma , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutagênese , Mutação , Edição de RNA , Transcrição Gênica
6.
PLoS Biol ; 13(12): e1002310, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26633141

RESUMO

Synthetic Biology Open Language (SBOL) Visual is a graphical standard for genetic engineering. It consists of symbols representing DNA subsequences, including regulatory elements and DNA assembly features. These symbols can be used to draw illustrations for communication and instruction, and as image assets for computer-aided design. SBOL Visual is a community standard, freely available for personal, academic, and commercial use (Creative Commons CC0 license). We provide prototypical symbol images that have been used in scientific publications and software tools. We encourage users to use and modify them freely, and to join the SBOL Visual community: http://www.sbolstandard.org/visual.


Assuntos
Cromatina/química , DNA/química , Engenharia Genética/métodos , Modelos Genéticos , Simbolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Desenho Assistido por Computador , Comportamento Cooperativo , DNA/metabolismo , Bases de Dados de Ácidos Nucleicos , Engenharia Genética/normas , Engenharia Genética/tendências , Humanos , Internet , Motivos de Nucleotídeos , Publicações , Sequências Reguladoras de Ácido Nucleico , Software
7.
Nat Methods ; 11(7): 723-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24797424

RESUMO

A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Engenharia Genética/instrumentação , Regulação da Expressão Gênica , Marcação de Genes , Engenharia Genética/métodos , Células HEK293 , Humanos , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Polimerase III/genética , Transcrição Gênica/efeitos dos fármacos , Pequeno RNA não Traduzido
8.
Biochem Soc Trans ; 45(3): 793-803, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28620041

RESUMO

A synthetic biology workflow is composed of data repositories that provide information about genetic parts, sequence-level design tools to compose these parts into circuits, visualization tools to depict these designs, genetic design tools to select parts to create systems, and modeling and simulation tools to evaluate alternative design choices. Data standards enable the ready exchange of information within such a workflow, allowing repositories and tools to be connected from a diversity of sources. The present paper describes one such workflow that utilizes, among others, the Synthetic Biology Open Language (SBOL) to describe genetic designs, the Systems Biology Markup Language to model these designs, and SBOL Visual to visualize these designs. We describe how a standard-enabled workflow can be used to produce types of design information, including multiple repositories and software tools exchanging information using a variety of data standards. Recently, the ACS Synthetic Biology journal has recommended the use of SBOL in their publications.


Assuntos
Biologia Sintética/métodos , Fluxo de Trabalho , Modelos Biológicos , Software
9.
Philos Trans A Math Phys Eng Sci ; 373(2046)2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26078346

RESUMO

Computation increasingly takes place not on an individual device, but distributed throughout a material or environment, whether it be a silicon surface, a network of wireless devices, a collection of biological cells or a programmable material. Emerging programming models embrace this reality and provide abstractions inspired by physics, such as computational fields, that allow such systems to be programmed holistically, rather than in terms of individual devices. This paper aims to provide a unified approach for the investigation and engineering of computations programmed with the aid of space-time abstractions, by bringing together a number of recent results, as well as to identify critical open problems.

10.
Methods Mol Biol ; 2774: 153-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441764

RESUMO

Flow cytometry is a powerful quantitative assay supporting high-throughput collection of single-cell data with a high dynamic range. For flow cytometry to yield reproducible data with a quantitative relationship to the underlying biology, however, requires that (1) appropriate process controls are collected along with experimental samples, (2) these process controls are used for unit calibration and quality control, and (3) data are analyzed using appropriate statistics. To this end, this chapter describes methods for quantitative flow cytometry through the addition of process controls and analyses, thereby enabling better development, modeling, and debugging of engineered biological organisms. The methods described here have specifically been developed in the context of transient transfections in mammalian cells but may in many cases be adaptable to other categories of transfection and other types of cells.


Assuntos
Mamíferos , Animais , Citometria de Fluxo , Calibragem , Controle de Qualidade , Transfecção
11.
Sci Rep ; 13(1): 5390, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012314

RESUMO

As synthetic biology becomes increasingly capable and accessible, it is likewise increasingly critical to be able to make accurate biosecurity determinations regarding the pathogenicity or toxicity of particular nucleic acid or amino acid sequences. At present, this is typically done using the BLAST algorithm to determine the best match with sequences in the NCBI nucleic acid and protein databases. Neither BLAST nor any of the NCBI databases, however, are actually designed for biosafety determination. Critically, taxonomic errors or ambiguities in the NCBI nucleic acid and protein databases can also cause errors in BLAST-based taxonomic categorization. With heavily studied taxa and frequently used biotechnology tools, even low frequency taxonomic categorization issues can lead to high rates of errors in biosecurity decision-making. Here we focus on the implications for false positives, finding that BLAST against NCBI's protein database will now incorrectly categorize a number of commonly used biotechnology tool sequences as the pathogens or toxins with which they have been used. Paradoxically, this implies that problems are expected to be most acute for the pathogens and toxins of highest interest and for the most widely used biotechnology tools. We thus conclude that biosecurity tools should shift away from BLAST against general purpose databases and towards new methods that are specifically tailored for biosafety purposes.


Assuntos
Biotecnologia , Software , Alinhamento de Sequência , Bases de Dados de Proteínas , Sequência de Aminoácidos
12.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998319

RESUMO

There are several critical events that occur in the uterus during early pregnancy which are necessary for the establishment and maintenance of pregnancy. These events include blastocyst implantation, uterine decidualization, uterine neoangiogenesis, differentiation of trophoblast stem cells into different trophoblast cell lineages, and formation of a placenta. These processes involve several different cell types within the pregnant uterus. Communication between these cell types must be intricately coordinated for successful embryo implantation and the formation of a functional maternal-fetal interface in the placenta. Understanding how this intricate coordination transpires has been a focus of researchers in the field for many years. It has long been understood that maternal endometrial tissue plays a key role in intercellular signaling during early pregnancy, sending signals to nearby tissues in a paracrine manner. Recently, insights have been obtained into the mechanisms by which these signaling events occur. Notably, the endometrium has been shown to secrete extracellular vesicles (EVs) that contain crucial cargo (proteins, lipids, RNA, miRNA) that are taken up by recipient cells to initiate a response leading to the occurrence of critical events during implantation and placentation. In this review, we aim to summarize the role that endometrium-derived EVs play in mediating cell-to-cell communications within the pregnant uterus to orchestrate the events that must occur to establish and maintain pregnancy. We will also discuss how aberrant endometrial EV signaling may lead to pathophysiological conditions, such as endometriosis and infertility.


Assuntos
Vesículas Extracelulares , Útero , Gravidez , Feminino , Humanos , Útero/metabolismo , Endométrio/metabolismo , Comunicação Celular , Implantação do Embrião/fisiologia , Vesículas Extracelulares/metabolismo
13.
ACS Synth Biol ; 12(1): 340-346, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36595709

RESUMO

Standards support synthetic biology research by enabling the exchange of component information. However, using formal representations, such as the Synthetic Biology Open Language (SBOL), typically requires either a thorough understanding of these standards or a suite of tools developed in concurrence with the ontologies. Since these tools may be a barrier for use by many practitioners, the Excel-SBOL Converter was developed to facilitate the use of SBOL and integration into existing workflows. The converter consists of two Python libraries: one that converts Excel templates to SBOL and another that converts SBOL to an Excel workbook. Both libraries can be used either directly or via a SynBioHub plugin.


Assuntos
Linguagens de Programação , Biologia Sintética , Idioma , Padrões de Referência , Fluxo de Trabalho , Software
14.
bioRxiv ; 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36993295

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1 -null mouse model ( Runx1 d/d ) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1 d/d mice exhibited severely compromised decidual angiogenesis, and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1 d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed a critical role of Runx1 in controlling insulin-like growth factor (IGF) signaling at the maternal-fetal interface. While Runx1-deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGF-binding protein 4 (IGFBP4), which regulates the bioavailability of IGFs thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1 d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development. Significance: A clear understanding of the maternal pathways that ensure coordination of uterine differentiation and angiogenesis with embryonic growth during the critical early stages of placenta formation still eludes us. The present study reveals that the transcription factor Runx1 controls a set of molecular, cellular, and integrative mechanisms that mediate maternal adaptive responses controlling uterine angiogenesis, trophoblast differentiation, and resultant uterine vascular remodeling, which are essential steps during placenta development.

15.
ACS Synth Biol ; 12(12): 3646-3655, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956262

RESUMO

The design and construction of genetic systems, in silico, in vitro, or in vivo, often involve the handling of various pieces of DNA that exist in different forms across an assembly process: as a standalone "part" sequence, as an insert into a carrier vector, as a digested fragment, etc. Communication about these different forms of a part and their relationships is often confusing, however, because of a lack of standardized terms. Here, we present a systematic terminology and an associated set of practices for representing genetic parts at various stages of design, synthesis, and assembly. These practices are intended to represent any of the wide array of approaches based on embedding parts in carrier vectors, such as BioBricks or Type IIS methods (e.g., GoldenGate, MoClo, GoldenBraid, and PhytoBricks), and have been successfully used as a basis for cross-institutional coordination and software tooling in the iGEM Engineering Committee.


Assuntos
DNA , Software , Clonagem Molecular , DNA/genética , Biologia Sintética , Engenharia Genética
16.
PNAS Nexus ; 2(7): pgad215, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37416873

RESUMO

During early pregnancy in humans and rodents, uterine stromal cells undergo a remarkable differentiation to form the decidua, a transient maternal tissue that supports the growing fetus. It is important to understand the key decidual pathways that orchestrate the proper development of the placenta, a key structure at the maternal-fetal interface. We discovered that ablation of expression of the transcription factor Runx1 in decidual stromal cells in a conditional Runx1-null mouse model (Runx1d/d) causes fetal lethality during placentation. Further phenotypic analysis revealed that uteri of pregnant Runx1d/d mice exhibited severely compromised decidual angiogenesis and a lack of trophoblast differentiation and migration, resulting in impaired spiral artery remodeling. Gene expression profiling using uteri from Runx1d/d and control mice revealed that Runx1 directly controls the decidual expression of the gap junction protein connexin 43 (also known as GJA1), which was previously shown to be essential for decidual angiogenesis. Our study also revealed that Runx1 controls the expression of insulin-like growth factor (IGF) 2 and IGF-binding protein 4 (IGFBP4) during early pregnancy. While Runx1 deficiency drastically reduced the production of IGF2 by the decidual cells, we observed concurrent elevated expression of the IGFBP4, which regulates the bioavailability of IGFs, thereby controlling trophoblast differentiation. We posit that dysregulated expression of GJA1, IGF2, and IGFBP4 in Runx1d/d decidua contributes to the observed defects in uterine angiogenesis, trophoblast differentiation, and vascular remodeling. This study therefore provides unique insights into key maternal pathways that control the early phases of maternal-fetal interactions within a critical window during placental development.

17.
Synth Biol (Oxf) ; 8(1): ysad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073284

RESUMO

Synthetic biologists have made great progress over the past decade in developing methods for modular assembly of genetic sequences and in engineering biological systems with a wide variety of functions in various contexts and organisms. However, current paradigms in the field entangle sequence and functionality in a manner that makes abstraction difficult, reduces engineering flexibility and impairs predictability and design reuse. Functional Synthetic Biology aims to overcome these impediments by focusing the design of biological systems on function, rather than on sequence. This reorientation will decouple the engineering of biological devices from the specifics of how those devices are put to use, requiring both conceptual and organizational change, as well as supporting software tooling. Realizing this vision of Functional Synthetic Biology will allow more flexibility in how devices are used, more opportunity for reuse of devices and data, improvements in predictability and reductions in technical risk and cost.

18.
Synth Biol (Oxf) ; 8(1): ysad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073283

RESUMO

Computational tools addressing various components of design-build-test-learn (DBTL) loops for the construction of synthetic genetic networks exist but do not generally cover the entire DBTL loop. This manuscript introduces an end-to-end sequence of tools that together form a DBTL loop called Design Assemble Round Trip (DART). DART provides rational selection and refinement of genetic parts to construct and test a circuit. Computational support for experimental process, metadata management, standardized data collection and reproducible data analysis is provided via the previously published Round Trip (RT) test-learn loop. The primary focus of this work is on the Design Assemble (DA) part of the tool chain, which improves on previous techniques by screening up to thousands of network topologies for robust performance using a novel robustness score derived from dynamical behavior based on circuit topology only. In addition, novel experimental support software is introduced for the assembly of genetic circuits. A complete design-through-analysis sequence is presented using several OR and NOR circuit designs, with and without structural redundancy, that are implemented in budding yeast. The execution of DART tested the predictions of the design tools, specifically with regard to robust and reproducible performance under different experimental conditions. The data analysis depended on a novel application of machine learning techniques to segment bimodal flow cytometry distributions. Evidence is presented that, in some cases, a more complex build may impart more robustness and reproducibility across experimental conditions. Graphical Abstract.

19.
ACS Synth Biol ; 11(7): 2523-2526, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35767721

RESUMO

The Synthetic Biology Open Language version 3 (SBOL3) provides a data model for representation of synthetic biology information across multiple scales and throughout the design-build-test-learn workflow. To support practical use of this data model, we have developed pySBOL3, a Python library that allows programmers to create and edit SBOL3 documents. Here we describe this library and key engineering decisions in its design. The resulting implementation is a compact and maintainable core that provides both a familiar, pythonic interface for manipulating SBOL3 objects as well as mechanisms for building additional extensions and representations on this base.


Assuntos
Linguagens de Programação , Biologia Sintética , Software , Biologia Sintética/métodos , Fluxo de Trabalho
20.
ACS Synth Biol ; 11(5): 1782-1789, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35412812

RESUMO

CRISPR-based gene editing is a powerful tool with great potential for applications in the treatment of many inherited and acquired diseases. The longer that CRISPR gene therapy is maintained within a patient, however, the higher the likelihood that it will result in problematic side effects such as off-target editing or immune response. One approach to mitigating these issues is to link the operation of the therapeutic system to a safety switch that autonomously disables its operation and removes the delivered therapeutics after some amount of time. We present here a simulation-based analysis of the potential for regulating the time delay of such a safety switch using one or two transcriptional regulators and/or recombinases. Combinatorial circuit generation identifies 30 potential architectures for such circuits, which we evaluate in simulation with respect to tunability, sensitivity to parameter values, and sensitivity to cell-to-cell variation. This modeling predicts one of these circuit architectures to have the desired dynamics and robustness, which can be further tested and applied in the context of CRISPR therapeutics.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA