Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Water Health ; 22(5): 923-938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822470

RESUMO

The World Health Organization classifies leptospirosis as a significant public health concern, predominantly affecting impoverished and unsanitary regions. By using the Pensacola Bay System as a case study, this study examines the underappreciated susceptibility of developed subtropical coastal ecosystems such as the Pensacola Bay System to neglected zoonotic pathogens such as Leptospira. We analyzed 132 water samples collected over 12 months from 44 distinct locations with high levels of Escherichia coli (>410 most probable number/100 mL). Fecal indicator bacteria (FIB) concentrations were assessed using IDEXX Colilert-18 and Enterolert-18, and an analysis of water physiochemical characteristics and rainfall intensity was conducted. The LipL32 gene was used as a quantitative polymerase chain reaction (qPCR) indicator to identify the distribution of Leptospira interrogans. The results revealed 12 instances of the presence of L. interrogans at sites with high FIB over various land cover and aquatic ecosystem types. Independent of specific rainfall events, a seasonal relationship between precipitation and elevated rates of fecal bacteria and leptospirosis was found. These findings highlight qPCR's utility in identifying pathogens in aquatic environments and the widespread conditions where it can be found in natural and developed areas.


Assuntos
Microbiologia da Água , Leptospirose/microbiologia , Leptospirose/epidemiologia , Leptospira/isolamento & purificação , Leptospira/genética , Fezes/microbiologia , Leptospira interrogans/isolamento & purificação , Leptospira interrogans/genética , Monitoramento Ambiental/métodos , Chuva , Estações do Ano , Baías/microbiologia , Análise Espaço-Temporal
2.
J Environ Manage ; 343: 118185, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224688

RESUMO

The use of organic amendments to enhance soil health is increasingly being identified as a strategy to improve residential landscapes while also reducing the need for external inputs (e.g., fertilizers, irrigation). Composted biosolids are a re-purposed waste product that can be used in organic amendments to improve the overall sustainability of a municipality by enhancing residential soil carbon content while simultaneously reducing waste materials. However, the biosolids-based feedstock of these compost products has the potential to be a source of organic contaminants. We conducted a laboratory-based soil column experiment to evaluate the potential for different commercially available compost products to act as a source of emerging organic contaminants in residential landscapes. We compared two biosolids-based compost products, a manure-based compost product, and a control (no compost) treatment by irrigating soil columns for 30 days and collecting daily leachate samples to quantify leaching rates of six hormones, eight pharmaceuticals, and seven per- and polyfluoroalkyl substances (PFAS). Detection of hormones and pharmaceuticals was rare, suggesting that compost amendments are likely not a major source of these contaminants to groundwater resources. In contrast, we detected three of the seven PFAS compounds in leachate samples throughout the study. Perfluorohexanoic acid (PFHxA) was more likely to leach from biosolids-based compost treatments than other treatments (p < 0.05) and perfluorobutane sulfonate (PFBS) was only detected in biosolids-based treatments (although PFBS concentrations did not significantly differ among treatments). In contrast, perfluorooctanoic acid (PFOA) was commonly detected across all treatments (including controls), suggesting potential PFOA experimental contamination. Overall, these results demonstrate that commercially available composted biosolids amendments are likely not a major source of hormone and pharmaceutical contamination. The detection of PFHxA at significantly higher concentrations in biosolids treatments suggests that biosolids-based composts may act as sources of PFHxA to the environment. However, concentrations of multiple PFAS compounds found in leachate in this study were lower than concentrations found in known PFAS hotspots. Therefore, there is potential for environmental contamination from PFAS leaching from composted biosolids, but leachate concentrations are low which should be considered in risk-benefit analyses when considering whether or not to use composted biosolids as an organic amendment to enhance residential soil health.


Assuntos
Compostagem , Poluentes do Solo , Solo , Biossólidos , Resíduos/análise , Poluentes do Solo/análise , Preparações Farmacêuticas
3.
Environ Manage ; 64(4): 436-455, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31444546

RESUMO

Package treatment plants (PTPs) are facilities designed to treat onsite wastewater for small communities, commercial, and residential developments. PTPs are being utilized in a growing number of coastal communities. This study estimated the effects of coastal tourism on onsite wastewater nitrogen (N) inputs to a barrier island surficial aquifer (Bogue Banks, NC). The N-removal effectiveness was assessed for seven PTPs that treated wastewater from vacation properties using a range of technologies: extended aeration; sequencing batch reactor; and advanced media filtration. Influent and effluent wastewater samples were collected monthly from Feb. 2014 to Jan. 2015 and analyzed for particulate and dissolved N. Increased summer visitation associated with coastal tourism resulted in an increase in water use, wastewater inputs, and PTP N loading to the surficial aquifer. However, extended aeration systems did not have significantly elevated TN loads during the summer months because their treatment efficiency increased. N inputs associated with coastal tourism made up approximately 51% of the annual wastewater-related N load to the surficial aquifer. Onsite wastewater N-loading to the surficial aquifer (6.7 kg-N/ha/yr) appeared to be the dominant source of N loading on the island. Water quality data indicated that these N inputs have resulted in increased groundwater NO3 concentrations in the surficial aquifer. Overall, wastewater inputs added approximately 4.6 cm of groundwater recharge annually to the island. Coastal tourism can result in measurable increases in wastewater N loading, groundwater nitrogen concentrations, and groundwater recharge.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Ilhas , Nitrogênio , Águas Residuárias
4.
Water Sci Technol ; 74(7): 1527-1538, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27763333

RESUMO

The goal of this study was to gain a better understanding of the PO4-P treatment efficiency of onsite wastewater systems (OWS) installed in nutrient-sensitive watersheds of the North Carolina Piedmont. Four OWS including two conventional and two single-pass sand filter (SF) systems were evaluated at sites with clay-rich soils. Piezometers were installed near all of the OWS, and down-gradient from the conventional OWS for groundwater collection and characterization. Septic tanks, groundwater, SF effluent, and surface waters were sampled each season during 2015 (five times) and analyzed for PO4-P and Cl concentrations and for various environmental parameters. The conventional and SF OWS reduced PO4-P concentrations by an average of 99% and 90%, respectively, before discharge to surface waters. Mass-load reductions of PO4-P were also greater for the conventional OWS (mean 95%), relative to SF (83%) systems. The effluents discharged by SF OWS were influencing surface water quality. Additional treatment of the effluent from single-pass SF with reactive media is suggested, along with monitoring of the final effluent for PO4-P concentrations. This research provides important information that is absent from the published literature concerning PO4-P contributions to water resources from OWS in clay soils.


Assuntos
Filtração/instrumentação , Fosfatos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Cloretos/química , Filtração/métodos , Água Subterrânea/química , North Carolina , Solo/química , Movimentos da Água , Poluição da Água/prevenção & controle , Qualidade da Água
5.
HardwareX ; 14: e00427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260521

RESUMO

Conventional water resource monitoring systems are usually expensive, have a low-temporal resolution, and lack spatial dimension entirely. These systems are typically available as stations or handheld devices. Pinpointing sources of pollution using these systems can be difficult. This project involves developing a high-resolution free-flowing monitoring buoy that records spatiotemporal water-quality data in flowing stream environments. The system is highly customizable, and even users with limited experience in programming or electronics can tailor GatorByte to their needs. The platform includes a data logger, a cloud-based server, and visualization tools. The data logger uses low-cost sensors, electronic peripherals, a 3D-printed enclosure, and printed circuit boards, with a total cost per unit under $1,000 USD. The data logger uses an NB-IoT-capable Arduino for real-time reporting and visualizing sensor data. The GatorByte records physiochemical water metrics - pH, temperature, dissolved oxygen, electroconductivity, and the current location of the buoy using a GPS module. The data logger also includes micro-SD storage and a Bluetooth module for on-field diagnostics. Using the GatorByte buoy, the collection of variations in water quality data in temporal as well as spatial dimensions can be achieved cost-effectively and reliably, enabling quick detection and resolution of pollution events.

6.
Sci Total Environ ; 901: 165826, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37524192

RESUMO

There is a need to develop improved methods for water quality analysis. Traditionally, water quality analysis is performed in a laboratory on discrete samples or in the field with simple sensors, but these methods have inherent limitations. Ultraviolet-visible absorption spectroscopy (UVAS) is a commonly used laboratory technique for water quality analysis and is being applied more broadly in combination with machine learning (ML) to allow for the detection of multiple analytes without sample pretreatments. This methodology (referred to here as Hydrochemical analysis using Ultraviolet-visible absorption spectroscopy and Machine learning; 'HUM') can be applied in the laboratory or in situ while requiring less time, labor, and materials compared to traditional laboratory analysis. HUM has been used for the quantification of a variety of chemicals in a variety of settings, but information is lacking related to instrumental setup, sample requirements, and data analysis procedures. For instance, there is a need to investigate the influence of spectral parameters (e.g., sensitivity, signal-to-noise ratio, and spectral resolution) on measurement error. There is also a lack of research aimed at developing ML algorithms specifically for HUM. Finally, there are emerging concepts such as sensor fusion and model-sensor fusion which have been applied to similar fields but are not common in studies involving HUM. This review suggests the need for further studies to better understand the factors that influence HUM measurement accuracy along with the need for hardware and software developments so that the methodology can ultimately become more robust and standardized. This, in turn, could increase its adoption in both academic and non-academic settings. Once the HUM methodology has matured, it could help to reduce the environmental impacts of society by improving our understanding and management of environmental systems through high-frequency data collection and automated control of water quality in environmentally relevant systems.

7.
Sci Total Environ ; 711: 135133, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837878

RESUMO

Designed ecosystems are built as part of ongoing urban expansion, providing a suite of valued ecosystem services. However, these new ecosystems could also promote disservices by facilitating the colonization and spread of invasive species. We conduct the first assessment of the quantity and invasion of an overlooked designed ecosystem: stormwater ponds. These ponds are commonly recommended for managing urban hydrology, but little is known about their ecology or extent of proliferation. Using a broad-scale survey of pond coverage in Florida, USA, we found that over 76,000 stormwater ponds have been built just in this state, forming 2.7% of total urban land cover. This extensive pondscape of manufactured habitats could facilitate species spread throughout urban areas and into nearby natural waterbodies. We also conducted a survey of the severity of plant invasion in 30 ponds in Gainesville, FL, US across two pond types (dry vs. wet), and a gradient of management intensities (low, medium, high) and pond ages. We unexpectedly found a high number of invasive plant species (28 in just 30 ponds). Ninety-six percent of surveyed ponds contained from one to ten of these species, with ponds exhibiting high turnover in invader composition (i.e., high beta diversity). The bank sections of dry unmanaged ponds exhibited the highest mean invasive species richness (5.8 ± 1.3) and the inundated centers of wet medium managed ponds exhibited the highest mean invasive species cover (34 ± 12%). Invasive plant richness and cover also tended to be greater in dry ponds with higher soil nutrient levels, and in older wet ponds. Therefore, we found that highly maintained and younger wet ponds were the least invaded. Nevertheless, common management practices that limit plant invasions may also limit native species establishment and invasion may increase in the decades following pond construction.


Assuntos
Ecossistema , Lagoas , Florida , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA