Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(12): e2212035120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913571

RESUMO

Recent studies have suggested that protected areas often fail to conserve target species. However, the efficacy of terrestrial protected areas is difficult to measure, especially for highly vagile species like migratory birds that may move between protected and unprotected areas throughout their lives. Here, we use a 30-y dataset of detailed demographic data from a migratory waterbird, the Whooper swan (Cygnus cygnus), to assess the value of nature reserves (NRs). We assess how demographic rates vary at sites with varying levels of protection and how they are influenced by movements between sites. Swans had a lower breeding probability when wintering inside NRs than outside but better survival for all age classes, generating a 30-fold higher annual growth rate within NRs. There was also a net movement of individuals from NRs to non-NRs. By combining these demographic rates and estimates of movement (into and out of NRs) into population projection models, we show that the NRs should help to double the population of swans wintering in the United Kingdom by 2030. These results highlight the major effect that spatial management can have on species conservation, even when the areas protected are relatively small and only used during short periods of the life cycle.


Assuntos
Migração Animal , Anseriformes , Humanos , Animais , Aves , Patos , Estações do Ano , Demografia
2.
Oecologia ; 204(4): 943-957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619585

RESUMO

Top carnivores can influence the structure of ecological communities, primarily through competition and predation; however, communities are also influenced by bottom-up forces such as anthropogenic habitat disturbance. Top carnivore declines will likely alter competitive dynamics within and amongst sympatric carnivore species. Increasing intraspecific competition is generally predicted to drive niche expansion and/or individual specialisation, while interspecific competition tends to constrain niches. Using stable isotope analysis of whiskers, we studied the effects of Tasmanian devil Sarcophilus harrisii declines upon the population- and individual-level isotopic niches of Tasmanian devils and sympatric spotted-tailed quolls Dasyurus maculatus subsp. maculatus. We investigated whether time since the onset of devil decline (a proxy for severity of decline) and landscape characteristics affected the isotopic niche breadth and overlap of devil and quoll populations. We quantified individual isotopic niche breadth for a subset of Tasmanian devils and spotted-tailed quolls and assessed whether between-site population niche variation was driven by individual-level specialisation. Tasmanian devils and spotted-tailed quolls demonstrated smaller population-level isotopic niche breadths with increasing human-modified habitat, while time since the onset of devil decline had no effect on population-level niche breadth or interspecific niche overlap. Individual isotopic niche breadths of Tasmanian devils and spotted-tailed quolls were narrower in human-modified landscapes, likely driving population isotopic niche contraction, however, the degree of individuals' specialisation relative to one another remained constant. Our results suggest that across varied landscapes, mammalian carnivore niches can be more sensitive to the bottom-up forces of anthropogenic habitat disturbance than to the top-down effects of top carnivore decline.


Assuntos
Ecossistema , Animais , Marsupiais , Humanos , Carnívoros
3.
Rapid Commun Mass Spectrom ; 37(9): e9489, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775809

RESUMO

RATIONALE: By combining precision satellite-tracking with blood sampling, seabirds can be used to validate marine carbon and nitrogen isoscapes, but it is unclear whether a comparable approach using low-precision light-level geolocators (GLS) and feather sampling can be similarly effective. METHODS: Here we used GLS to identify wintering areas of northern gannets (Morus bassanus) and sampled winter grown feathers (confirmed from image analysis of non-breeding birds) to test for spatial gradients in δ13 C and δ15 N in the NE Atlantic. RESULTS: By matching winter-grown feathers with the non-breeding location of tracked birds we found latitudinal gradients in δ13 C and δ15 N in neritic waters. Moreover, isotopic patterns were best explained by sea surface temperature. Similar isotope gradients were found in fish muscle sampled at local ports. CONCLUSIONS: Our study reveals the potential of using seabird GLS and feathers to reconstruct large-scale isotopic patterns.


Assuntos
Migração Animal , Aves , Animais , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Temperatura , Migração Animal/fisiologia , Aves/fisiologia , Estações do Ano
4.
Oecologia ; 201(2): 369-383, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576527

RESUMO

Arctic-nesting geese face energetic challenges during spring migration, including ecological barriers and weather conditions (e.g., precipitation and temperature), which in long-lived species can lead to a trade-off to defer reproduction in favor of greater survival. We used GPS location and acceleration data collected from 35 greater white-fronted geese of the North American midcontinent and Greenland populations at spring migration stopovers, and novel applications of Bayesian dynamic linear models to test daily effects of minimum temperature and precipitation on energy expenditure (i.e., overall dynamic body acceleration, ODBA) and proportion of time spent feeding (PTF), then examined the daily and additive importance of ODBA and PTF on probability of breeding deferral using stochastic antecedent models. We expected distinct responses in behavior and probability of breeding deferral between and within populations due to differences in stopover area availability. Time-varying coefficients of weather conditions were variable between ODBA and PTF, and often did not show consistent patterns among birds, indicating plasticity in how individuals respond to conditions. An increase in antecedent ODBA was associated with a slightly increased probability of deferral in midcontinent geese but not Greenland geese. Probability of deferral decreased with increased PTF in both populations. We did not detect any differentially important time periods. These results suggest either that movements and behavior throughout spring migration do not explain breeding deferral or that ecological linkages between bird decisions during spring and subsequent breeding deferral were different between populations and across migration but occurred at different time scales than those we examined.


Assuntos
Migração Animal , Gansos , Humanos , Animais , Gansos/fisiologia , Teorema de Bayes , Migração Animal/fisiologia , Estações do Ano , Temperatura , Cruzamento , Probabilidade
5.
J Anim Ecol ; 91(10): 1961-1974, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35962601

RESUMO

Animal migrations represent the regular movements of trillions of individuals. The scale of these movements has inspired human intrigue for millennia and has been intensively studied by biologists. This research has highlighted the diversity of migratory strategies seen across and within migratory taxa: while some migrants temporarily express phenotypes dedicated to travel, others show little or no phenotypic flexibility in association with migration. However, a vocabulary for describing these contrasting solutions to the performance trade-offs inherent to the highly dynamic lifestyle of migrants (and strategies intermediate between these two extremes) is currently missing. We propose a taxon-independent organising framework based on energetics, distinguishing between migrants that forage as they travel (income migrants) and those that fuel migration using energy acquired before departure (capital migrants). Not only does our capital:income continuum of migratory energetics account for the variable extent of phenotypic flexibility within and across migrant populations, but it also aligns with theoreticians' treatment of migration and clarifies how migration impacts other phases of the life cycle. As such, it provides a unifying scale and common vacabulary for comparing the migratory strategies of divergent taxa.


Assuntos
Migração Animal , Animais , Humanos , Estações do Ano
6.
Proc Biol Sci ; 288(1949): 20202718, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33878919

RESUMO

A key goal of conservation is to protect biodiversity by supporting the long-term persistence of viable, natural populations of wild species. Conservation practice has long been guided by genetic, ecological and demographic indicators of risk. Emerging evidence of animal culture across diverse taxa and its role as a driver of evolutionary diversification, population structure and demographic processes may be essential for augmenting these conventional conservation approaches and decision-making. Animal culture was the focus of a ground-breaking resolution under the Convention on the Conservation of Migratory Species of Wild Animals (CMS), an international treaty operating under the UN Environment Programme. Here, we synthesize existing evidence to demonstrate how social learning and animal culture interact with processes important to conservation management. Specifically, we explore how social learning might influence population viability and be an important resource in response to anthropogenic change, and provide examples of how it can result in phenotypically distinct units with different, socially learnt behavioural strategies. While identifying culture and social learning can be challenging, indirect identification and parsimonious inferences may be informative. Finally, we identify relevant methodologies and provide a framework for viewing behavioural data through a cultural lens which might provide new insights for conservation management.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Animais Selvagens , Evolução Biológica , Aprendizagem
7.
Proc Biol Sci ; 287(1941): 20202683, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33352077

RESUMO

Mercury (Hg) is an environmental contaminant which, at high concentrations, can negatively influence avian physiology and demography. Albatrosses (Diomedeidae) have higher Hg burdens than all other avian families. Here, we measure total Hg (THg) concentrations of body feathers from adult grey-headed albatrosses (Thalassarche chrysostoma) at South Georgia. Specifically, we (i) analyse temporal trends at South Georgia (1989-2013) and make comparisons with other breeding populations; (ii) identify factors driving variation in THg concentrations and (iii) examine relationships with breeding success. Mean ± s.d. feather THg concentrations were 13.0 ± 8.0 µg g-1 dw, which represents a threefold increase over the past 25 years at South Georgia and is the highest recorded in the Thalassarche genus. Foraging habitat, inferred from stable isotope ratios of carbon (δ13C), significantly influenced THg concentrations-feathers moulted in Antarctic waters had far lower THg concentrations than those moulted in subantarctic or subtropical waters. THg concentrations also increased with trophic level (δ15N), reflecting the biomagnification process. There was limited support for the influence of sex, age and previous breeding outcome on feather THg concentrations. However, in males, Hg exposure was correlated with breeding outcome-failed birds had significantly higher feather THg concentrations than successful birds. These results provide key insights into the drivers and consequences of Hg exposure in this globally important albatross population.


Assuntos
Aves , Monitoramento Ambiental , Mercúrio , Poluentes Químicos da Água , Animais , Regiões Antárticas , Cruzamento , Ecologia , Ecossistema , Plumas , Cadeia Alimentar , Isótopos , Masculino , Estado Nutricional
8.
Glob Chang Biol ; 26(10): 5447-5458, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32677737

RESUMO

Anthropogenic climate disruption, including temperature and precipitation regime shifts, has been linked to animal population declines since the mid-20th century. However, some species, such as Arctic-breeding geese, have thrived during this period. An increased understanding of how climate disruption might link to demographic rates in thriving species is an important perspective in quantifying the impact of anthropogenic climate disruption on the global state of nature. The Greenland barnacle goose (Branta leucopsis) population has increased tenfold in abundance since the mid-20th century. A concurrent weather regime shift towards warmer, wetter conditions occurred throughout its range in Greenland (breeding), Ireland and Scotland (wintering) and Iceland (spring and autumn staging). The aim of this study was to determine the relationship between weather and demographic rates of Greenland barnacle geese to discern the role of climate shifts in the population trend. We quantified the relationship between temperature and precipitation and Greenland barnacle goose survival and productivity over a 50 year period from 1968 to 2018. We detected significant positive relationships between warmer, wetter conditions on the Icelandic spring staging grounds and survival. We also detected contrasting relationships between warmer, wetter conditions during autumn staging and survival and productivity, with warm, dry conditions being the most favourable for productivity. Survival increased in the latter part of the study period, supporting the possibility that spring weather regime shifts contributed to the increasing population trend. This may be related to improved forage resources, as warming air temperatures have been shown to improve survival rates in several other Arctic and northern terrestrial herbivorous species through indirect bottom-up effects on forage availability.


Assuntos
Migração Animal , Gansos , Animais , Regiões Árticas , Demografia , Groenlândia , Islândia , Irlanda , Escócia , Estações do Ano , Temperatura
9.
J Anim Ecol ; 89(8): 1872-1882, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32277838

RESUMO

Physiological processes, including those that disrupt oxidative balance, have been proposed as key to understanding fundamental life-history trade-offs. Yet, examination of changes in oxidative balance within wild animals across time, space and major life-history challenges remains uncommon. For example, migration presents substantial physiological challenges for individuals, and data on migratory individuals would provide crucial context for exposing the importance of relationships between oxidative balance and fitness outcomes. Here we examined the consistency of commonly used measures of oxidative balance in longitudinally sampled free-living individuals of a long-lived, long-distance migrant, the Brent goose Branta bernicla hrota over periods of months to years. Although inter-individual and temporal variation in measures of oxidative balance were substantial, we found high consistency in measures of lipid peroxidation and circulating non-enzymatic antioxidants in longitudinally sampled individuals. This suggests the potential for the existence of individual oxidative phenotypes. Given intra-individual consistency, we then examined how these physiological measures relate to survival and reproductive success across all sampled individuals. Surprisingly, lower survival was predicted for individuals with lower levels of damage, with no measured physiological metric associated with reproductive success. Our results demonstrate that snapshot measurements of a consistent measure of oxidative balance can inform our understanding of differences in a key demographic trait. However, the positive relationship between oxidative damage and survival emphasises the need to investigate the relationships between the oxidative system and fitness outcomes in other species undergoing similar physiologically challenging life cycles. This would highlight the extent to which variation in such traits and resource allocation trade-offs is a result of adaptation to different life-history strategies.


Assuntos
Características de História de Vida , Reprodução , Adaptação Fisiológica , Animais , Estágios do Ciclo de Vida , Estresse Oxidativo
10.
Biol Lett ; 15(1): 20180750, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958216

RESUMO

Oxidative stress is a likely consequence of hard physical exertion and thus a potential mediator of life-history trade-offs in migratory animals. However, little is known about the relative importance of intrinsic and extrinsic stressors on the oxidative state of individuals in wild populations. We quantified the relationships between air temperature, sex, body condition and three markers of oxidative state (malondialdehyde, superoxide dismutase and total antioxidant capacity) across hundreds of individuals of a long-distance migrant (the brent goose Branta bernicla hrota) during wintering and spring staging. We found that air temperature and migratory stage were the strongest predictors of oxidative state. This emphasizes the importance of extrinsic factors in regulating the oxidative state of migrating birds, with differential effects across the migration. The significance of abiotic effects demonstrates an additional mechanism by which changing climates may affect migratory costs.


Assuntos
Migração Animal , Aves , Animais , Clima , Estresse Oxidativo , Estações do Ano
11.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28747480

RESUMO

Individual foraging specializations, where individuals use a small component of the population niche width, are widespread in nature with important ecological and evolutionary implications. In long-lived animals, foraging ability develops with age, but we know little about the ontogeny of individuality in foraging. Here we use precision global positioning system (GPS) loggers to examine how individual foraging site fidelity (IFSF), a common component of foraging specialization, varies between breeders, failed breeders and immatures in a long-lived marine predator-the northern gannet Morus bassanus Breeders (aged 5+) showed strong IFSF: they had similar routes and were faithful to distal points during successive trips. However, centrally placed immatures (aged 2-3) were far more exploratory and lacked route or foraging site fidelity. Failed breeders were intermediate: some with strong fidelity, others being more exploratory. Individual foraging specializations were previously thought to arise as a function of heritable phenotypic differences or via social transmission. Our results instead suggest a third alternative-in long-lived species foraging sites are learned during exploratory behaviours early in life, which become canalized with age and experience, and refined where possible-the exploration-refinement foraging hypothesis. We speculate similar patterns may be present in other long-lived species and moreover that long periods of immaturity may be a consequence of such memory-based individual foraging strategies.


Assuntos
Fatores Etários , Comportamento Apetitivo , Aves/fisiologia , Reprodução , Animais , Ecologia , Comportamento Alimentar , Sistemas de Informação Geográfica
12.
J Anim Ecol ; 86(2): 285-295, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27973683

RESUMO

The manner in which patterns of variation and interactions among demographic rates contribute to population growth rate (λ) is key to understanding how animal populations will respond to changing climatic conditions. Migratory species are likely to be particularly sensitive to climatic conditions as they experience a range of different environments throughout their annual cycle. However, few studies have provided fully integrated demographic analyses of migratory populations in response to changing climatic conditions. Here, we employed integrated population models to demonstrate that the environmental conditions experienced during a short but critical period play a central role in the demography of a long-distance migrant, the light-bellied Brent goose (Branta bernicla hrota). Female survival was positively associated with June North Atlantic Oscillation (NAO) values, whereas male survival was not. In contrast, breeding productivity was negatively associated with June NAO, suggesting a trade-off between female survival and reproductive success. Both adult female and adult male survival showed low temporal variation, whereas there was high temporal variation in recruitment and breeding productivity. In addition, while annual population growth was positively correlated with annual breeding productivity, a sensitivity analysis revealed that population growth was most sensitive to changes in adult survival. Our results demonstrate that the environmental conditions experienced during a relatively short-time window at the start of the breeding season play a critical role in shaping the demography of a long-distant Arctic migrant. Crucially, different demographic rates responded in opposing directions to climatic variation, emphasising the need for integrated analysis of multiple demographic traits when understanding population dynamics.


Assuntos
Migração Animal , Gansos/fisiologia , Longevidade , Reprodução , Animais , Canadá , Meio Ambiente , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional
13.
J Anim Ecol ; 85(1): 199-212, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26439671

RESUMO

Understanding interspecific interactions, and the influences of anthropogenic disturbance and environmental change on communities, are key challenges in ecology. Despite the pressing need to understand these fundamental drivers of community structure and dynamics, only 17% of ecological studies conducted over the past three decades have been at the community level. Here, we assess the trophic structure of the procellariiform community breeding at South Georgia, to identify the factors that determine foraging niches and possible temporal changes. We collected conventional diet data from 13 sympatric species between 1974 and 2002, and quantified intra- and inter-guild, and annual variation in diet between and within foraging habits. In addition, we tested the reliability of stable isotope analysis (SIA) of seabird feathers collected over a 13-year period, in relation to those of their potential prey, as a tool to assess community structure when diets are diverse and there is high spatial heterogeneity in environmental baselines. Our results using conventional diet data identified a four-guild community structure, distinguishing species that mainly feed on crustaceans; large fish and squid; a mixture of crustaceans, small fish and squid; or carrion. In total, Antarctic krill Euphausia superba represented 32%, and 14 other species a further 46% of the combined diet of all 13 predators, underlining the reliance of this community on relatively few types of prey. Annual variation in trophic segregation depended on relative prey availability; however, our data did not provide evidence of changes in guild structure associated with a suggested decline in Antarctic krill abundance over the past 40 years. Reflecting the differences in δ(15) N of potential prey (crustaceans vs. squid vs. fish and carrion), analysis of δ(15) N in chick feathers identified a three-guild community structure that was constant over a 13-year period, but lacked the trophic cluster representing giant petrels which was identified using conventional diet data. Our study is the first in recent decades to examine dietary changes in seabird communities over time. Conventional dietary analysis provided better resolution of community structure than SIA. However, δ(15) N in chick feathers, which reflected trophic (level) specialization, was nevertheless an effective and less time-consuming means of monitoring temporal changes.


Assuntos
Biodiversidade , Aves/fisiologia , Cadeia Alimentar , Animais , Regiões Antárticas , Organismos Aquáticos/fisiologia , Ilhas Atlânticas , Dieta , Ecologia
14.
J Anim Ecol ; 85(2): 467-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26717445

RESUMO

Demographic links among fragmented populations are commonly studied as source-sink dynamics, whereby source populations exhibit net recruitment and net emigration, while sinks suffer net mortality but enjoy net immigration. It is commonly assumed that large, persistent aggregations of individuals must be sources, but this ignores the possibility that they are sinks instead, buoyed demographically by immigration. We tested this assumption using Bayesian integrated population modelling of Greenland white-fronted geese (Anser albifrons flavirostris) at their largest wintering site (Wexford, Ireland), combining capture-mark-recapture, census and recruitment data collected from 1982 to 2010. Management for this subspecies occurs largely on wintering areas; thus, study of source-sink dynamics of discrete regular wintering units provides unprecedented insights into population regulation and enables identification of likely processes influencing population dynamics at Wexford and among 70 other Greenland white-fronted goose wintering subpopulations. Using results from integrated population modelling, we parameterized an age-structured population projection matrix to determine the contribution of movement rates (emigration and immigration), recruitment and mortality to the dynamics of the Wexford subpopulation. Survival estimates for juvenile and adult birds at Wexford and adult birds elsewhere fluctuated over the 29-year study period, but were not identifiably different. However, per capita recruitment rates at Wexford in later years (post-1995) were identifiably lower than in earlier years (pre-1995). The observed persistence of the Wexford subpopulation was only possible with high rates of immigration, which exceeded emigration in each year. Thus, despite its apparent stability, Wexford has functioned as a sink over the entire study period. These results demonstrate that even large subpopulations can potentially be sinks, and that movement dynamics (e.g. immigration) among winters can dramatically obscure key processes driving subpopulation size. Further, novel population models which integrate capture-mark-recapture, census and recruitment data are essential to correctly ascribing source-sink status and accurately informing development of site-safeguard networks.


Assuntos
Migração Animal , Gansos/fisiologia , Animais , Teorema de Bayes , Irlanda , Modelos Biológicos , Dinâmica Populacional , Estações do Ano
15.
Biol Lett ; 12(8)2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27531154

RESUMO

Upwelling regions are highly productive habitats targeted by wide-ranging marine predators and industrial fisheries. In this study, we track the migratory movements of eight seabird species from across the Atlantic; quantify overlap with the Canary Current Large Marine Ecosystem (CCLME) and determine the habitat characteristics that drive this association. Our results indicate the CCLME is a biodiversity hotspot for migratory seabirds; all tracked species and more than 70% of individuals used this upwelling region. Relative species richness peaked in areas where sea surface temperature averaged between 15 and 20°C, and correlated positively with chlorophyll a, revealing the optimum conditions driving bottom-up trophic effects for seabirds. Marine vertebrates are not confined by international boundaries, making conservation challenging. However, by linking diversity to ocean productivity, our research reveals the significance of the CCLME for seabird populations from across the Atlantic, making it a priority for conservation action.


Assuntos
Canários , Animais , Biodiversidade , Clorofila , Clorofila A , Ecossistema , Oceanos e Mares
16.
Oecologia ; 182(4): 985-994, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27638183

RESUMO

Amongst migratory species, it is common to find individuals from different populations or geographical origins sharing staging or wintering areas. Given their differing life histories, ecological theory would predict that the different groups of individuals should exhibit some level of niche segregation. This has rarely been investigated because of the difficulty in assigning migrating individuals to breeding areas. Here, we start by documenting a broad geographical gradient of hydrogen isotopes (δ 2H) in robin Erithacus rubecula feathers across Europe. We then use δ 2H, as well as wing-tip shape, as surrogates for broad migratory origin of birds wintering in Iberia, to investigate the ecological segregation of populations. Wintering robins of different sexes, ages and body sizes are known to segregate between habitats in Iberia. This has been attributed to the despotic exclusion of inferior competitors from the best patches by dominant individuals. We find no segregation between habitats in relation to δ 2H in feathers, or to wing-tip shape, which suggests that no major asymmetries in competitive ability exist between migrant robins of different origins. Trophic level (inferred from nitrogen isotopes in blood) correlated both with δ 2H in feathers and with wing-tip shape, showing that individuals from different geographic origins display a degree of ecological segregation in shared winter quarters. Isotopic mixing models indicate that wintering birds originating from more northerly populations consume more invertebrates. Our multi-scale study suggests that trophic-niche segregation may result from specializations (arising in the population-specific breeding areas) that are transported by the migrants into the shared wintering grounds.


Assuntos
Migração Animal , Aves Canoras , Animais , Plumas/química , Isótopos de Nitrogênio , Estações do Ano
17.
Oecologia ; 181(3): 809-17, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26995680

RESUMO

Theory predicts persistence of long-term family relationships in vertebrates will occur until perceived fitness costs exceed benefits to either parents or offspring. We examined whether increased breeding probability and survival were associated with prolonged parent-offspring and sibling-sibling relationships in a long-lived Arctic migrant herbivore, the Greenland white-fronted goose (Anser albifrons flavirostris). Although offspring associated with parents for 1-13 years, 79 % of these associations lasted two or less years. Only 65 (9.9 %) of the 656 marked offspring bred once in their lifetime, and just 16 (2.4 %) bred twice or more. The probability of birds with siblings breeding successfully in a subsequent year was credibly greater than that of independent birds at ages 5, 6, and 7. Survival of offspring with parents was credibly greater than that of independent/nonbreeder birds at all possible ages (i.e., ages 2-7+). A cost-benefit matrix model utilizing breeding and survival probabilities showed that staying with family groups was favored over leaving until age 3, after which there were no credible differences between staying and leaving strategies until the oldest ages, when leaving family groups was favored. Thus, most birds in this study either departed family groups early (e.g., at age 2, when the "stay" strategy was favored) or as predicted by our cost-benefit model (i.e., at age 3). Although extended family associations are a feature of this population, we contend that the survival benefits are not sufficient enough to yield clear fitness benefits, and associations only persist because parents and offspring mutually benefit from their persistence.


Assuntos
Gansos , Irmãos , Animais , Cruzamento , Análise Custo-Benefício , Pais
18.
Ecology ; 96(11): 3058-74, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070024

RESUMO

Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short-term IFSF could result from animals using a win-stay, lose-shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central-place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long-term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind-induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long-term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win-stay, lose-shift foraging. Rather, we hypothesize that site familiarity, accrued early in-life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central-place foragers, with far-reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.


Assuntos
Aves/fisiologia , Comportamento Alimentar/fisiologia , Distribuição Animal , Animais , Composição Corporal , Ecossistema , Isótopos , Fatores de Tempo
19.
Oecologia ; 178(1): 31-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656581

RESUMO

Although intra-population variation in niches is a widespread phenomenon with important implications for ecology, evolution and management of a range of animal species, the causes and consequences of this variation remain poorly understood. We used stable isotope analysis to characterise foraging niches and to investigate the causes and consequences of individual niche variation in the European badger, a mustelid mammal that lives in territorial social groups, but forages alone. We found that the degree of individual niche variation within social groups was negatively related to the availability of farmland habitats, which represent an important foraging habitat for badgers; and was positively related to territory size, supporting the idea that resource limitation and ecological opportunity lead to increased individual specialisation. We also found that the degree of individual specialisation related to an individual's body condition and that this effect varied with ecological context; such that specialisation had a stronger positive relationship with body condition in social groups with reduced availability of key farmland habitats. Body condition was also related to the utilisation of specific resources (woodland invertebrates), but again this relationship varied with the availability of farmland foraging habitats. This study supports the idea that resource availability plays an important role in determining patterns of individual niche variation, and identifies the potential adaptive consequences of specialised foraging strategies.


Assuntos
Comportamento Animal , Dieta , Ecossistema , Comportamento Alimentar , Mustelidae , Fenótipo , Animais , Ecologia , Invertebrados , Comportamento Predatório
20.
Ir Vet J ; 69: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27651892

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. FINDINGS: In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. CONCLUSION: To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA