Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(12): 7523-7537, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34519156

RESUMO

Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost-effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom-made resistance mock community and complex environmental samples to increase the proportion of on-target reads as much as >200-fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both in silico and in vitro) to utilization and forecasting updates and retirement.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética
2.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31471306

RESUMO

The chicken gastrointestinal tract harbors microorganisms that play a role in the health and disease status of the host. The cecum is the part of the gut that carries the highest microbial densities, has the longest residence time of digesta, and is a vital site for urea recycling and water regulation. Therefore, the cecum provides a rich environment for bacteria to horizontally transfer genes between one another via mobile genetic elements such as plasmids and bacteriophages. In this study, we used broiler chicken cecum as a model to investigate antibiotic resistance genes that can be transferred in vitro from cecal flora to Salmonella enterica serovar Heidelberg. We used whole-genome sequencing and resistome enrichment to decipher the interactions between S Heidelberg, the gut microbiome, and acquired antibiotic resistance. After 48 h of incubation of ceca under microaerophilic conditions, we recovered one S Heidelberg isolate with an acquired IncK2 plasmid (88 kb) carrying an extended-spectrum-ß-lactamase gene (blaCMY-2). In vitro, this plasmid was transferable between Escherichia coli and S Heidelberg strains but transfer was unsuccessful between S Heidelberg strains. An in-depth genetic characterization of transferred plasmids suggests that they share significant homology with P1-like phages. This study contributes to our understanding of horizontal gene transfer between an important foodborne pathogen and the chicken gut microbiome.IMPORTANCES. Heidelberg is a clinically important serovar, linked to foodborne illness and among the top 5 serovars isolated from poultry in the United States and Canada. Acquisition of new genetic material from the microbial flora in the gastrointestinal tract of food animals, including broilers, may contribute to increased fitness of pathogens like S. Heidelberg and may increase their level of antibiotic tolerance. Therefore, it is critical to gain a better understanding of the interactions that occur between important pathogens and the commensals present in the animal gut and other agroecosystems. In this report, we show that the native flora in broiler ceca were capable of transferring mobile genetic elements carrying the AmpC ß-lactamase (blaCMY-2) gene to an important foodborne pathogen, S Heidelberg. The potential role for bacteriophage transduction is also discussed.


Assuntos
Ceco/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Microbioma Gastrointestinal , Técnicas de Transferência de Genes , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Galinhas/microbiologia , Sequências Repetitivas Dispersas , Plasmídeos/genética , Salmonella enterica/efeitos dos fármacos , Sorogrupo , Sequenciamento Completo do Genoma , beta-Lactamases/genética
3.
Animals (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338088

RESUMO

GITDs are among the most common causes of death in adult and young horses in the United States (US). Previous studies have indicated a connection between GITDs and the equine gut microbiome. However, the low taxonomic resolution of the current microbiome sequencing methods has hampered the identification of specific bacterial changes associated with GITDs in horses. Here, we have compared TEHC, a new approach for 16S rRNA gene selection and sequencing, with conventional 16S rRNA gene amplicon sequencing for the characterization of the equine fecal microbiome. Both sequencing approaches were used to determine the fecal microbiome of four adult horses and one commercial mock microbiome. Our results show that TEHC yielded significantly more operational taxonomic units (OTUs) than conventional 16S amplicon sequencing when the same number of reads were used in the analysis. This translated into a deeper and more accurate characterization of the fecal microbiome when the samples were sequenced with TEHC according to the relative abundance analysis. Alpha and beta diversity metrics corroborated these findings and demonstrated that the microbiome of the fecal samples was significantly richer when sequenced with TEHC compared to 16S amplicon sequencing. Altogether, our study suggests that the TEHC strategy provides a more extensive characterization of the fecal microbiome of horses than the current alternative based on the PCR amplification of a portion of the 16S rRNA gene.

4.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405792

RESUMO

Cryptosporidium spp. are medically and scientifically relevant protozoan parasites that cause severe diarrheal illness in infants and immunosuppressed populations as well as animals. Although most human Cryptosporidium infections are caused by C. parvum and C. hominis, there are several other human-infecting species including C. meleagridis, which is commonly observed in developing countries. Here, we polished and annotated a long-read genome sequence assembly for C. meleagridis TU1867, a species which infects birds and humans. The genome sequence was generated using a combination of whole genome amplification (WGA) and long-read Oxford Nanopore Technologies sequencing. The assembly was then polished with Illumina data. The chromosome-level genome assembly is 9.2 Mbp with a contig N50 of 1.1 Mb. Annotation revealed 3,923 protein-coding genes. A BUSCO analysis indicates a completeness of 96.6% (n=446), including 430 (96.4%) single-copy and 1 (0.224%) duplicated apicomplexan conserved gene(s). The new C. meleagridis genome assembly is nearly gap-free and provides a valuable new resource for the Cryptosporidium community and future studies on evolution and host-specificity.

5.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405857

RESUMO

Multiple Displacement Amplification (MDA) outperforms conventional PCR in long fragment and whole genome amplification which makes it attractive to couple with long-read sequencing of samples with limited quantities of DNA to obtain improved genome assemblies. Here, we explore the efficacy and limits of MDA for genome sequence assembly using Oxford Nanopore Technologies (ONT) rapid library preparations and minION sequencing. We successfully generated almost complete genome sequences for all organisms examined, including Cryptosporidium meleagridis, Staphylococcus aureus, Enterococcus faecium, and Escherichia coli, with the ability to generate high-quality data from samples starting with only 0.025 ng of total DNA. Controlled sheared DNA samples exhibited a distinct pattern of size-increase after MDA, which may be associated with the amplification of long, low-abundance fragments present in the assay, as well as generating concatemeric sequences during amplification. To address concatemers, we developed a computational pipeline (CADECT: Concatemer Detection Tool) to identify and remove putative concatemeric sequences. This study highlights the efficacy of MDA in generating high-quality genome assemblies from limited amounts of input DNA. Also, the CADECT pipeline effectively mitigated the impact of concatemeric sequences, enabling the assembly of contiguous sequences even in cases where the input genomic DNA was degraded. These results have significant implications for the study of organisms that are challenging to culture in vitro, such as Cryptosporidium, and for expediting critical results in clinical settings with limited quantities of available genomic DNA.

6.
medRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370669

RESUMO

We evaluated gut carriage of extended spectrum beta lactamase producing Enterobacteriaceae (ESBL-E) in southeastern U.S. residents without recent in-patient healthcare exposure. Study enrollment was January 2021-February 2022 in Athens, Georgia, U.S. and included a diverse population of 505 adults plus 50 child participants (age 0-5). Based on culture-based screening of stool samples, 4.5% of 555 participants carried ESBL-Es. This is slightly higher than reported in studies conducted 2012-2015, which found carriage rates of 2.5-3.9% in healthy U.S. residents. All ESBL-E confirmed isolates (n=25) were identified as Escherichia coli. Isolates belonged to 11 sequence types, with 48% classified as ST131. Ninety six percent of ESBL-E isolates carried a blaCTX-M gene. Isolated ESBL-Es frequently carried virulence genes as well as multiple classes of antibiotic resistance genes. Long-term colonization was common, with 64% of ESBL-E positive participants testing positive when rescreened three months later. One participant yielded isolates belonging to two different E. coli sequence types that carried blaCTX-M-1 genes on near-identical plasmids, suggesting intra-gut plasmid transfer. Isolation of E. coli on media without antibiotics revealed that ESBL-E. coli typically made up a minor fraction of the overall gut E. coli population, although in some cases they were the dominant strain. ESBL-E carriage was not associated with a significantly different stool microbiome composition. However, some microbial taxa were differentially abundant in ESBL-E carriers. Together, these results suggest that a small subpopulation of US residents are long-term, asymptomatic carriers of ESBL-Es, and may serve as an important reservoir for community spread of these ESBL genes.

7.
Front Microbiol ; 12: 644662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986735

RESUMO

Environmental microbial diversity is often investigated from a molecular perspective using 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics. While amplicon methods are fast, low-cost, and have curated reference databases, they can suffer from amplification bias and are limited in genomic scope. In contrast, shotgun metagenomic methods sample more genomic regions with fewer sequence acquisition biases, but are much more expensive (even with moderate sequencing depth) and computationally challenging. Here, we develop a set of 16S rRNA sequence capture baits that offer a potential middle ground with the advantages from both approaches for investigating microbial communities. These baits cover the diversity of all 16S rRNA sequences available in the Greengenes (v. 13.5) database, with no sequence having <78% sequence identity to at least one bait for all segments of 16S. The use of our baits provide comparable results to 16S amplicon libraries and shotgun metagenomic libraries when assigning taxonomic units from 16S sequences within the metagenomic reads. We demonstrate that 16S rRNA capture baits can be used on a range of microbial samples (i.e., mock communities and rodent fecal samples) to increase the proportion of 16S rRNA sequences (average > 400-fold) and decrease analysis time to obtain consistent community assessments. Furthermore, our study reveals that bioinformatic methods used to analyze sequencing data may have a greater influence on estimates of community composition than library preparation method used, likely due in part to the extent and curation of the reference databases considered. Thus, enriching existing aliquots of shotgun metagenomic libraries and obtaining modest numbers of reads from them offers an efficient orthogonal method for assessment of bacterial community composition.

8.
Elife ; 52016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27240733

RESUMO

Porphyrias are disorders of heme metabolism frequently characterized by extreme photosensitivity. This symptom results from accumulation of porphyrins, tetrapyrrole intermediates in heme biosynthesis that generate reactive oxygen species when exposed to light, in the skin of affected individuals. Here we report that in addition to producing an ommochrome body pigment, the planarian flatworm Schmidtea mediterranea generates porphyrins in its subepithelial pigment cells under physiological conditions, and that this leads to pigment cell loss when animals are exposed to intense visible light. Remarkably, porphyrin biosynthesis and light-induced depigmentation are enhanced by starvation, recapitulating a common feature of some porphyrias - decreased nutrient intake precipitates an acute manifestation of the disease. Our results establish planarians as an experimentally tractable animal model for research into the pathophysiology of acute porphyrias, and potentially for the identification of novel pharmacological interventions capable of alleviating porphyrin-mediated photosensitivity or decoupling dieting and fasting from disease pathogenesis.


Assuntos
Proteínas de Helminto/genética , Pigmentos Biológicos/genética , Planárias/efeitos da radiação , Porfiria Aguda Intermitente/fisiopatologia , Porfirinas/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Proteínas de Helminto/metabolismo , Heme/genética , Heme/metabolismo , Humanos , Luz , Fenotiazinas/metabolismo , Pigmentos Biológicos/antagonistas & inibidores , Pigmentos Biológicos/biossíntese , Planárias/genética , Planárias/metabolismo , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/metabolismo , Porfirinas/antagonistas & inibidores , Porfirinas/biossíntese , Pigmentação da Pele/genética , Pigmentação da Pele/efeitos da radiação , Inanição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA