Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 41(8): 2252-2262, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34134519

RESUMO

OBJECTIVE: Leveraging microRNA-Seq data and the 1000 Genomes imputed genotypes, we identified rs174561 as a strong microRNA quantitative trait loci for circulating microRNA-1908-5p with higher miR-1908-5p and reduced LDL (lowdensity lipoprotein)-cholesterol, fasting glucose and A1c concentrations in carriers of the rs-174561-C allele. Here, we have investigated the molecular mechanism(s) linking miR-1908-5p to LDL-C concentrations. APPROACH AND RESULTS: Transfection experiments demonstrate that the presence of the C allele significantly increases miR- 1908-5p abundance relative to the T allele. LDLR mRNA and low-density lipoprotein receptor (LDLR) total protein were unchanged in response to differential miR-1908-5p expression. However, the ratio of the cleaved to full-length form of LDLR decreased with miR-1908-5p mimic and increased with miR-1908-5p inhibitor treatment. BMP1 (bone morphogenetic protein 1) is a protease responsible for LDLR cleavage, and we show that miR-1908-5p mimic reduces BMP1 mRNA. Using a reporter array, we identified the TGF-ß (transforming growth factor-beta) signaling pathway activity to be reduced by miR- 1908-5p mimic treatment, and this was associated with reduced TGFB1 expression. TGF-ß signaling increases BMP1, and we further demonstrate that the effect of miR-1908-5p on LDLR cleavage is abolished by exogenous TGF-ß treatment. CONCLUSIONS: These findings uncover a mechanism whereby miR-1908-5p reduces TGFB1 abundance resulting in lower expression of BMP1, ultimately leading to reduced LDLR cleavage. Cleavage of the mature LDLR is known to reduce cell surface affinity for LDL, thereby linking miR-1908-5p to lower circulating LDL-cholesterol levels.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , LDL-Colesterol/metabolismo , Ácidos Graxos Dessaturases/genética , Hepatócitos/enzimologia , MicroRNAs/metabolismo , Polimorfismo Genético , Proteína Morfogenética Óssea 1/genética , Linhagem Celular , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Estabilidade Proteica , Proteólise , Estabilidade de RNA , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
2.
Front Physiol ; 13: 960272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187800

RESUMO

Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a secreted protein that binds and mediates endo-lysosomal degradation of low-density lipoprotein receptor (LDLR), limiting plasma clearance of cholesterol-rich LDL particles in liver. Gain-of-function (GOF) point mutations in PCSK9 are associated with familial hypercholesterolemia (FH). Approximately 30%-40% of PCSK9 in normolipidemic human plasma is bound to LDL particles. We previously reported that an R496W GOF mutation in a region of PCSK9 known as cysteine-histidine-rich domain module 1 (CM1) prevents LDL binding in vitro [Sarkar et al., J. Biol. Chem. 295 (8), 2285-2298 (2020)]. Herein, we identify additional GOF mutations that inhibit LDL association, localized either within CM1 or a surface-exposed region in the PCSK9 prodomain. Notably, LDL binding was nearly abolished by a prodomain S127R GOF mutation, one of the first PCSK9 mutations identified in FH patients. PCSK9 containing alanine or proline substitutions at amino acid position 127 were also defective for LDL binding. LDL inhibited cell surface LDLR binding and degradation induced by exogenous PCSK9-D374Y but had no effect on an S127R-D374Y double mutant form of PCSK9. These studies reveal that multiple FH-associated GOF mutations in two distinct regions of PCSK9 inhibit LDL binding, and that the Ser-127 residue in PCSK9 plays a critical role.

3.
Sci Rep ; 11(1): 23748, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887471

RESUMO

We previously identified genomic variants that are quantitative trait loci for circulating miR-1908-5p and then showed this microRNA to causally associate with plasma levels of LDL-C, fasting blood glucose and HbA1c. The link to LDL-C was subsequently validated and clarified by the identification of a miR1908-5p-TGFB-LDLR regulatory axis. Here, we continue our investigations on miR1908-5p function by leveraging human primary hepatocytes and HuH-7 hepatoma models. Expression of miR1908-5p was shown to be sensitive to glucose and agents affecting glucose metabolism. Transcriptome-wide changes in primary hepatocytes and HuH-7 cells treated with a miR1908-5p mimic were investigated by enrichment approaches to identify targeted transcripts and cognate pathways. Significant pathways included autophagy and increased mitochondrial function. Reduced activation and/or levels of several key energy and metabolic regulators (AKT, mTOR, ME1, G6PD, AMPK and LKB) were subsequently confirmed in mimic treated HuH-7 cells. These effects were associated with reduced NADPH to NADP+ ratio in HuH-7 cells. LKB1 was validated as a direct target of miR1908-5p, the reintroduction of which was however insufficient to compensate for the impact of the miR1908-5p mimic on AMPK and ACC1. These findings implicate miR1908-5p in metabolic and energy regulation in hepatocyte models via multiple, independent, pathways.


Assuntos
Metabolismo Energético , Regulação da Expressão Gênica , Hepatócitos/metabolismo , MicroRNAs/genética , Interferência de RNA , Biomarcadores , Linhagem Celular Tumoral , Metabolismo Energético/genética , Genes Reporter , Humanos , NADP/metabolismo , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
4.
Diabetes ; 69(9): 2017-2026, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32527767

RESUMO

Weight loss in response to energy restriction is highly variable, and identification of genetic contributors can provide insights into underlying biology. Leveraging 1000 Genomes imputed genotypes, we carried out genome-wide association study (GWAS) analysis in 551 unrelated obese subjects of European ancestry who participated in an intensively supervised weight loss program with replication of promising signals in an independent sample of 1,331 obese subjects who completed the program at a later date. By single nucleotide polymorphism-based and sib-pair analysis, we show that that weight loss is a heritable trait, with estimated heritability (h 2 = 0.49) within the range reported for obesity. We find rs679482, intronic to SGCG (sarcoglycan γ), highly expressed in skeletal muscle, to concordantly associate with weight loss in discovery and replication samples reaching GWAS significance in the combined meta-analysis (ß = -0.35, P = 1.7 × 10-12). Located in a region of open chromatin, rs679482 is predicted to bind DMRT2, and allele-specific transcription factor binding analysis indicates preferential binding of DMRT2 to rs679482-A. Concordantly, rs679482-A impairs native repressor activity and increases basal and DMRT2-mediated enhancer activity. These findings confirm that weight loss is a heritable trait and provide evidence by which a novel variant in SGCG, rs679482, leads to impaired diet response.


Assuntos
Obesidade/terapia , Pacientes Ambulatoriais , Polimorfismo de Nucleotídeo Único , Sarcoglicanas/genética , Redução de Peso/genética , Programas de Redução de Peso , Adulto , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Obesidade/genética , População Branca/genética
5.
Cardiovasc Res ; 115(11): 1629-1645, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715214

RESUMO

AIMS: To identify genetic variants that have a regulatory impact on circulating microRNAs (miRNAs) and to connect genetic risk to blood traits/biomarkers through the circulating miRNAs. METHODS AND RESULTS: Leveraging miRNA-Seq data and the 1000 Genomes imputed genotypes, we carried out genome-wide association analysis for SNPs that regulate the expression of circulating miRNAs in a sample of 710 unrelated subjects of European ancestry. Wherever possible, we used data from the Framingham and the Geuvadis studies to replicate our findings. We found at least one genome-wide significant (P < 5e-8) miRNA-eQTL (mirQTL) for 143 circulating miRNAs. Overall each mirQTL explained a small portion (<1%) of variation in miRNA levels; however, we identified a few mirQTLs that explained 4% to 20% of variation in miRNA levels in plasma. Unlike trans-mirQTLs (P = 0.7), cis-mirQTLs tend to be also associated with their counterpart mature miRNAs (P < 0.0001), this suggests trans-mirQTLs exert their effect through processes that affect the stability of mature miRNAs; whereas, cis-mirQTLs mainly regulate the expression of primary-miRNAs. Next, we used the identified mirQTLs to investigate the links between circulating miRNAs with blood traits/biomarkers through Mendelian randomization analysis. We found miR-1908-5p plays an important role in regulating low-density lipoprotein (LDL), total cholesterol (TC), fasting glucose, HbA1c, and several lipid-metabolites in blood, whereas, miR-10b-5p mediates the trans-regulatory effect of the ABO locus on several blood proteins, coronary artery disease, and TC. Moreover, we demonstrated that a higher plasma level of miR-199a is causally associated with lower levels of LDL and TC. Finally, we found miR-143-3p and miR-145-5p are functionally related and mediate the effect of ZFPM2 on a number of its protein targets in blood including VEGFA, SERPINE1, and PDGFs. CONCLUSIONS: This study identifies SNPs that have a regulatory impact on circulating miRNAs, and underlines the role of several circulating miRNAs in mediating the effect of a number of GWAS loci on cardiometabolic phenotypes.


Assuntos
MicroRNA Circulante/genética , Metabolismo Energético/genética , Miocárdio/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Biomarcadores/sangue , Glicemia/metabolismo , MicroRNA Circulante/sangue , Feminino , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genótipo , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Lipídeos/sangue , Masculino , Análise da Randomização Mendeliana , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Fenótipo , RNA-Seq , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA