Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24785-24795, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475297

RESUMO

Optical parametric chirped-pulse amplification (OPCPA) using high-energy Nd:glass lasers has the potential to produce ultra-intense pulses (>1023 W/cm2). We report on the performance of the final high-efficiency amplifier in an OPCPA system based on large-aperture (63 × 63-mm2) partially deuterated potassium dihydrogen phosphate (DKDP) crystals. The seed beam (180-nm bandwidth, 110 mJ) was provided by the preceding OPCPA stages. A maximum pump-to-signal conversion efficiency of 41% and signal energy up to 13 J were achieved with a 52-mm-long DKDP crystal due to the flattop super-Gaussian pump beam profile and flat-in-time pulse shape.

2.
Opt Express ; 30(8): 12995-13008, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35472923

RESUMO

We present a theoretical and experimental analysis of the signal phase introduced by the pump-beam wavefront and spatial profile during optical parametric amplification (OPA) process. The theory predicts the appearance of an additional wavefront in the amplified signal beam that is proportional to the spatial derivative of the pump-beam wavefront. The effect of the pump-beam profile on the signal-beam wavefront is also investigated. Our experiments tested these theoretical predictions by comparing the wavefront of the signal beam before and after amplification in a multi-joule broadband OPA. The measured signal wavefront was shown to have the expected dependence on the pump-beam profile and wavefront. These results can be considered when designing petawatt-scale ultrabroadband optical parametric chirped-pulse-amplification systems.

3.
Opt Express ; 29(2): 1879-1889, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726392

RESUMO

High-energy deep ultraviolet (UV) sources are required for high-density plasma diagnostics. The fifth-harmonic generation of large-aperture neodymium lasers in ammonium dihydrogen phosphate (ADP) can significantly increase UV energies due to the availability of large ADP crystals. Noncritical phase matching in ADP for (ω + 4ω) was achieved by cooling a 65 × 65-mm crystal in a two-chamber cryostat to 200 K. The crystal chamber used helium as the thermally conductive medium between the crystal and the crystal chamber, which was surrounded by a high-vacuum chamber with a liquid nitrogen reservoir. A temperature variation of 0.2 K across the crystal aperture was obtained. The total conversion efficiency from the fundamental to the fifth harmonic at 211 nm was 26%.

4.
Appl Opt ; 60(36): 11104-11124, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201099

RESUMO

The multiterawatt (MTW) laser, built initially as the prototype front end for a petawatt laser system, is a 1053 nm hybrid system with gain from optical parametric chirped-pulse amplification (OPCPA) and Nd:glass. Compressors and target chambers were added, making MTW a complete laser facility (output energy up to 120 J, pulse duration from 20 fs to 2.8 ns) for studying high-energy-density physics and developing short-pulse laser technologies and target diagnostics. Further extensions of the laser support ultrahigh-intensity laser development of an all-OPCPA system and a Raman plasma amplifier. A short summary of the variety of scientific experiments conducted on MTW is also presented.

5.
Phys Rev Lett ; 124(2): 025001, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004052

RESUMO

The picosecond evolution of non-Maxwellian electron distribution functions was measured in a laser-produced plasma using collective electron plasma wave Thomson scattering. During the laser heating, the distribution was measured to be approximately super-Gaussian due to inverse bremsstrahlung heating. After the heating laser turned off, collisional ionization caused further modification to the distribution function while increasing electron density and decreasing temperature. Electron distribution functions were determined using Vlasov-Fokker-Planck simulations including atomic kinetics.

6.
Opt Lett ; 43(11): 2462-2465, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856404

RESUMO

The fifth harmonic of a pulsed Nd:YLF laser has been realized in a cascade of nonlinear crystals with a record efficiency of 30%. Cesium lithium borate is used in a Type-I configuration for sum-frequency mixing of 1053 and 266 nm, producing 211 nm pulses. Flat-topped beam profiles and pulse shapes optimize efficiency. The energies of the fifth harmonic up to 335 mJ in 2.4 ns pulses were demonstrated.

7.
Phys Rev Lett ; 120(22): 225001, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906187

RESUMO

Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.

8.
Opt Express ; 25(22): 26802-26814, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092165

RESUMO

We describe a parametric-amplification-based front end for seeding high-energy Nd:glass laser systems. The front end delivers up to 200 mJ by parametric amplification in 2.5-ns flat-in-time pulses tunable over more than 15 nm. Spectral tunability over a range larger than what is typically achieved by laser media at similar energy levels is implemented to investigate cross-beam energy transfer in multibeam target experiments. The front-end operation is simulated to explain the amplified signal's sensitivity to the input pump and signal. A large variety of amplified waveforms are generated by closed-loop pulse shaping. Various properties and limitations of this front end are discussed.

9.
Appl Opt ; 55(3): 498-501, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26835923

RESUMO

Four-color laser diagnostics were developed for Z-pinch and laser plasma at the 1 MA pulsed power generator. Four harmonics of the Nd:YAG laser at wavelengths of 1064, 532, 266, and 213 nm were produced during the cascade conversion in three nonlinear crystals and propagated together in one beampath. Deep UV probing allows better penetration of the dense plasma. Laser probing at four wavelengths allows observation of plasma in a wide range of densities in one shot of the diagnostic laser. Examples of four-color laser shadowgraphy and interferometry of the wire-array load and laser plasma interaction are presented and discussed.

10.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38980127

RESUMO

An x-ray multilayer mirror on a spherical substrate designed for near-normal incidence with a photon energy of ∼738 eV (F Heα) was procured and tested. This device is intended to be used for in-flight radiography of the shell in inertial confinement fusion experiments with cryogenic targets on the OMEGA laser at the Laboratory for Laser Energetics. Experiments in self-emission on a small (∼10 J) laser system showed that the reflectivity of the mirror is high enough to record an image at laser energies as low as 0.1 J. A second set of tests in backlighting geometry on a larger (kJ)-scale, short-pulse laser yielded usable radiographs with laser energies as low as 40 J with a spatial resolution of ∼10 µm.

11.
Phys Rev Lett ; 108(8): 085002, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463537

RESUMO

Time-resolved K(α) spectroscopy has been used to infer the hot-electron equilibration dynamics in high-intensity laser interactions with picosecond pulses and thin-foil solid targets. The measured K(α)-emission pulse width increases from ~3 to 6 ps for laser intensities from ~10(18) to 10(19) W/cm(2). Collisional energy-transfer model calculations suggest that hot electrons with mean energies from ~0.8 to 2 MeV are contained inside the target. The inferred mean hot-electron energies are broadly consistent with ponderomotive scaling over the relevant intensity range.

12.
Rev Sci Instrum ; 93(11): 115102, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461483

RESUMO

Talbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014-1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 µm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 µm diameter surrounded by low-density material of ∼40 µm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

13.
Rev Sci Instrum ; 92(6): 065110, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243593

RESUMO

Talbot-Lau x-ray interferometry has been implemented to map electron density gradients in High Energy Density Physics (HEDP) experiments. X-ray backlighter targets have been evaluated for Talbot-Lau X-ray Deflectometry (TXD). Cu foils, wires, and sphere targets have been irradiated by 10-150 J, 8-30 ps laser pulses, while two pulsed-power generators (∼350 kA, 350 ns and ∼200 kA, 150 ns) have driven Cu wire, hybrid, and laser-cut x-pinches. A plasma ablation front generated by the Omega EP laser was imaged for the first time through TXD for densities >1023 cm-3. Backlighter optimization in combination with x-ray CCD, image plates, and x-ray film has been assessed in terms of spatial resolution and interferometer contrast for accurate plasma characterization through TXD in pulsed-power and high-intensity laser environments. The results obtained thus far demonstrate the potential of TXD as a powerful diagnostic for HEDP.

14.
Phys Rev E ; 97(6-1): 063208, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011604

RESUMO

Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot-dense-plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. The data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

15.
Rev Sci Instrum ; 89(10): 10G127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399908

RESUMO

Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 µm3 foils, 20 µm diameter wire, and >10 µm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 µm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 µm) and double (4 × 25 µm) copper x-pinches were driven at ∼1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.

16.
Phys Rev E ; 95(6-1): 063204, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709197

RESUMO

Picosecond time-resolved x-ray spectroscopy is used to measure the spectral line shift of the 1s2p-1s^{2} transition in He-like Al ions as a function of the instantaneous plasma conditions. The plasma temperature and density are inferred from the Al He_{α} complex using a nonlocal-thermodynamic-equilibrium atomic physics model. The experimental spectra show a linearly increasing redshift for electron densities of 1-5×10^{23}cm^{-3}. The measured line shifts are broadly consistent with a generalized analytic line-shift model based on calculations of a self-consistent field ion-sphere model.

17.
Rev Sci Instrum ; 87(2): 023505, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931847

RESUMO

X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 µm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.


Assuntos
Elétrons , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
18.
Rev Sci Instrum ; 87(11): 11E312, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910646

RESUMO

A picosecond, time-resolved, x-ray spectroscopy platform was developed to study the thermal line emission from rapidly heated solid targets containing buried aluminum or iron layers. The targets were driven by high-contrast 1ω or 2ω laser pulses at focused intensities up to 1 × 1019 W/cm2. The experimental platform combines time-integrating and time-resolved x-ray spectrometers. Picosecond time resolution was achieved with a pair of ultrafast x-ray streak cameras coupled to high-throughput Hall spectrometers. Time-integrated spectra were collected on each shot to correct the streaked data for variations in x-ray photocathode spectral sensitivity. The time-integrated spectrometer uses three elliptical crystals to disperse x rays with energies between 800 and 2100 eV with moderate (E/ΔE ∼ 450) resolving power. The streaked spectrometers accept four interchangeable conical crystals with higher resolving power (E/ΔE ∼ 650) to measure the brightest thermal lines in the 1300 to 1700 eV spectral range.

19.
Rev Sci Instrum ; 87(11): 11E538, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910435

RESUMO

An ultrafast streaked extreme-ultraviolet (XUV) spectrometer (5-20 nm) was developed to measure the temperature dynamics in rapidly heated samples. Rapid heating makes it possible to create exotic states of matter that can be probed during their inertial confinement time-tens of picoseconds in the case of micron-sized targets. In contrast to other forms of pyrometry, where the temperature is inferred from bulk x-ray emission, XUV emission is restricted to the sample surface, allowing for a temperature measurement at the material-vacuum interface. The surface-temperature measurement constrains models for the release of high-energy-density material. Coupling the XUV spectrometer to an ultrafast (<2-ps) streak camera provided picosecond-time scale evolution of the surface-layer emission. Two high-throughput XUV spectrometers were designed to simultaneously measure the time-resolved and absolute XUV emission.

20.
Rev Sci Instrum ; 87(11): 11D501, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910439

RESUMO

Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA