Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Mol Phylogenet Evol ; 183: 107775, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972794

RESUMO

The dynamic climate history that drove sea level fluctuation during past glacial periods mediated the movement of organisms between Asia and North America via the Bering Land Bridge. Investigations of the biogeographic histories of small mammals and their parasites demonstrate facets of a complex history of episodic geographic colonization and refugial isolation that structured diversity across the Holarctic. We use a large multi-locus nuclear DNA sequence dataset to robustly resolve relationships within the cestode genus Arostrilepis (Cyclophyllidea: Hymenolepididae), a widespread parasite of predominantly arvicoline rodents (voles, lemmings). Using this phylogeny, we confirm that several Asian Arostrilepis lineages colonized North America during up to four distinct glacial periods in association with different rodent hosts, consistent with taxon-pulse dynamics. A previously inferred westward dispersal across the land bridge is rejected. We also refine interpretations of past host colonization, providing evidence for several distinct episodes of expanding host range, which probably contributed to diversification by Arostrilepis. Finally, Arostrilepis is shown to be paraphyletic with respect to Hymenandrya thomomyis, a parasite of pocket gophers, confirming that ancient Arostrilepis species colonized new host lineages upon arriving in North America.


Assuntos
Cestoides , Parasitos , Animais , Filogenia , Cestoides/genética , América do Norte , Clima , Mamíferos , Arvicolinae
3.
Mol Phylogenet Evol ; 169: 107396, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35031463

RESUMO

Resolution of rapid evolutionary radiatons requires harvesting maximal signal from phylogenomic datasets. However, studies of non-model clades often target conserved loci that are characterized by reduced information content, which can negatively affect gene tree precision and species tree accuracy. Single nucleotide polymorphism (SNP)-based methods are an underutilized but potentially valuable tool for estimating phylogeny and divergence times because they do not rely on resolved gene trees, allowing information from many or all variant loci to be leveraged in species tree reconstruction. We evaluated the utility of SNP-based methods in resolving phylogeny of Holarctic ground squirrels (Urocitellus), a radiation that has been difficult to disentangle, even in prior phylogenomic studies. We inferred phylogeny from a dataset of >3,000 ultraconserved element loci (UCEs) using two methods (SNAPP, SVDquartets) and compared our results with a new mitogenome phylogeny. We also systematically evaluated how phasing of UCEs improves per-locus information content, inference of topology, and other parameters within each of these SNP-based methods. Phasing improved topological resolution and branch length estimation at shallow levels (within species complexes), but less so at deeper levels, likely reflecting true uncertainty due to ancestral polymorphisms segregating in rapidly diverging lineages. We resolved key clades in Urocitellus and present targeted opportunities for future phylogenomic inquiry. Our results also extend the roadmap for use of SNPs to address vertebrate radiations and inform comparative analyses at multiple temporal scales.


Assuntos
Polimorfismo de Nucleotídeo Único , Sciuridae , Animais , Evolução Biológica , Filogenia , Sciuridae/genética
4.
Mol Phylogenet Evol ; 155: 106998, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33130299

RESUMO

The evolution of obligate parasites is often interpreted in light of their hosts' evolutionary history. An expanded approach is to examine the histories of multiple lineages of parasites that inhabit similar environments on a particular host lineage. Western North American chipmunks (genus Tamias) have a broad distribution, a history of divergence with gene flow, and host two species of sucking lice (Anoplura), Hoplopleura arboricola and Neohaematopinus pacificus. From total genomic sequencing, we obtained sequences of over 1100 loci sampled across the genomes of these lice to compare their evolutionary histories and examine the roles of host association in structuring louse relationships. Within each louse species, clades are largely associated with closely related chipmunk host species. Exceptions to this pattern appear to have a biogeographic component, but differ between the two louse species. Phylogenetic relationships among these major louse clades, in both species, are not congruent with chipmunk relationships. In the context of host associations, each louse lineage has a different evolutionary history, supporting the hypothesis that host-parasite assemblages vary both across the landscape and with the taxa under investigation. In addition, the louse Hoplopleura erratica (parasitizing the eastern Tamias striatus) is embedded within H. arboricola, rendering it paraphyletic. This phylogenetic result, together with comparable divergences within H. arboricola, indicate a need for taxonomic revision. Both host divergence and biogeographic components shape parasite diversification as demonstrated by the distinctive diversification patterns of these two independently evolving lineages that parasitize the same hosts.


Assuntos
Anoplura/classificação , Parasitos/genética , Filogenia , Sciuridae/parasitologia , Animais , Anoplura/genética , Sequência de Bases , Especificidade da Espécie
5.
Syst Biol ; 68(2): 298-316, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239963

RESUMO

Phylogenomic data sets are illuminating many areas of the Tree of Life. However, the large size of these data sets alone may be insufficient to resolve problematic nodes in the most rapid evolutionary radiations, because inferences in zones of extraordinarily low phylogenetic signal can be sensitive to the model and method of inference, as well as the information content of loci employed. We used a data set of $>$3950 ultraconserved element (UCE) loci from a classic mammalian radiation, ground-dwelling squirrels of the tribe Marmotini (Sciuridae: Xerinae), to assess sensitivity of phylogenetic estimates to varying per-locus information content across four different inference methods (RAxML, ASTRAL, NJst, and SVDquartets). Persistent discordance was found in topology and bootstrap support between concatenation- and coalescent-based inferences; among methods within the coalescent framework; and within all methods in response to different filtering scenarios. Contrary to some recent empirical UCE-based studies, filtering by information content did not promote complete among-method concordance. Nevertheless, filtering did improve concordance relative to randomly selected locus sets, largely via improved consistency of two-step summary methods (particularly NJst) under conditions of higher average per-locus variation (and thus increasing gene tree precision). The benefits of phylogenomic data set filtering are variable among classes of inference methods and across different evolutionary scenarios, reiterating the complexities of resolving rapid radiations, even with robust taxon and character sampling.


Assuntos
Classificação/métodos , Filogenia , Sciuridae/classificação , Sciuridae/genética , Animais , Especiação Genética , Genoma , Modelos Genéticos
6.
Am Nat ; 192(3): E106-E119, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30125233

RESUMO

Parasitism is a common symbiotic interaction across diverse natural systems. Using a comparative evolutionary approach, we investigated the contributions of both host phylogeny and abiotic factors toward diversification of phylogenetically independent endoparasites that inhabit essentially the same physical space. We tested for host-parasite and parasite-parasite phylogenetic concordance in western North American chipmunks (Rodentia: Sciuridae) and two distantly related species of pinworms (Nematoda: Oxyurida). Deep structure in molecular phylogenies revealed signals of host-associated divergence in both parasite species, while shallower phylogeographic structure varied between the two parasites. This suggests that although these parasites experienced similar landscapes and cyclic climate processes, temporally distinctive diversification events were associated with differences in the initiation of their association with host lineages. When climate cycles initiate diversification, partially congruent, but asynchronous, host-associated parasite phylogenies may emerge.


Assuntos
Especiação Genética , Interações Hospedeiro-Parasita , Oxyurida/genética , Sciuridae/parasitologia , Simpatria , Animais , Filogenia
7.
Syst Biol ; 66(5): 786-798, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123117

RESUMO

Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.].


Assuntos
Classificação/métodos , Genômica/métodos , Filogenia , Análise de Sequência
8.
Mol Phylogenet Evol ; 100: 170-182, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27083861

RESUMO

Integration of molecular methods, ecological modeling, and statistical hypothesis testing are increasing our understanding of differentiation within species and phylogenetic relationships among species by revealing environmental connections to evolutionary processes. Within mammals, novel diversity is being discovered and characterized as more complete geographic sampling is coupled with newer multi-disciplinary approaches. North American red squirrels exemplify a forest obligate genus whose species are monitored as indicators of forest ecosystem condition, yet phylogenetic relationships reflecting evolutionary history within this genus remain tentative. Through testing of competing systematic and niche-based divergence hypotheses, we recognize three species, Tamiasciurus douglasii, T. hudsonicus, and T. fremonti. Our data provide evidence of regional differences in evolutionary dynamics and continental gradients of complexity that are important both for future management and for investigating multiple pathways that can lead to the formation of new species.


Assuntos
Sciuridae/classificação , Animais , Evolução Biológica , Citocromos b/genética , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Ecossistema , Florestas , Variação Genética , América do Norte , Filogenia , Sciuridae/genética , Análise de Sequência de DNA
9.
Front Microbiol ; 13: 900312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979496

RESUMO

Sucking lice (Anoplura) are known to have established symbiotic associations multiple times with different groups of bacteria as diverse as Enterobacteriales, Legionellales, and Neisseriales. This diversity, together with absence of a common coevolving symbiont (such as Buchnera, in aphids), indicates that sucking lice underwent a series of symbiont acquisitions, losses, and replacements. To better understand evolution and significance of louse symbionts, genomic and phylogenetic data are needed from a broader taxonomic diversity of lice and their symbiotic bacteria. In this study, we extend the known spectrum of the louse symbionts with a new lineage associated with Neohaematopinus pacificus, a louse species that commonly parasitizes North American chipmunks. The recent coevolutionary analysis showed that rather than a single species, these lice form a cluster of unique phylogenetic lineages specific to separate chipmunk species (or group of closely related species). Using metagenomic assemblies, we show that the lice harbor a bacterium which mirrors their phylogeny and displays traits typical for obligate mutualists. Phylogenetic analyses place this bacterium within Enterobacteriaceae on a long branch related to another louse symbiont, "Candidatus Puchtella pedicinophila." We propose for this symbiotic lineage the name "Candidatus Lightella neohaematopini." Based on the reconstruction of metabolic pathways, we suggest that like other louse symbionts, L. neohaematopini provides its host with at least some B vitamins. In addition, several samples harbored another symbiotic bacterium phylogenetically affiliated with the Neisseriales-related symbionts described previously from the lice Polyplax serrata and Hoplopleura acanthopus. Characterizing these bacteria further extend the known diversity of the symbiotic associations in lice and show unique complexity and dynamics of the system.

10.
J Parasitol ; 108(4): 353-365, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35925594

RESUMO

The sucking louse fauna associated with Mongolian mammals is inadequately known. We provide a list of 25 species of sucking lice recorded from Mongolian rodents including previously published records, and new records of specimens collected during an expedition to northwestern Mongolia in 2015. Hoplopleura inagakii Ono and Hasegawa and Polyplax cricetulis Chin are newly recorded from Mongolia and 2 new host associations in Mongolia are recorded for Hoplopleura acanthopus (Burmeister). We describe Hoplopleura altaiensis n. sp., from the Gobi Altai mountain vole, Alticola barakshin Bannikov (type host) with an additional specimen from Alticola strelzowi (Kastchenko) (Strelzow's mountain vole). Both sexes of the new species are illustrated with scanning electron micrographs and line drawings. We note small morphological differences in the shape of the female subgenital plate between specimens prepared for scanning electron microscopy versus those prepared for light microscopy following DNA extraction.


Assuntos
Anoplura , Ftirápteros , Animais , Arvicolinae , Feminino , Gerbillinae , Masculino , Mamíferos , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA