Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(8): e202303335, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37971151

RESUMO

The cytochrome P450 monooxygenases (CYPs) are a class of heme-thiolate enzymes that insert oxygen into unactivated C-H bonds. These enzymes can be converted into peroxygenases via protein engineering, which enables their activity to occur using hydrogen peroxide (H2 O2 ) without the requirement for additional nicotinamide co-factors or partner proteins. Here, we demonstrate that soaking crystals of an engineered P450 peroxygenase with H2 O2 enables the enzymatic reaction to occur within the crystal. Crystals of the designed P450 peroxygenase, the T252E mutant of CYP199A4, in complex with 4-methoxybenzoic acid were soaked with different concentrations of H2 O2 for varying times to initiate the in crystallo O-demethylation reaction. Crystal structures of T252E-CYP199A4 showed a distinct loss of electron density that was consistent with the O-demethylated metabolite, 4-hydroxybenzoic acid. A new X-ray crystal structure of this enzyme with the 4-hydroxybenzoic acid product was obtained to enable comparison alongside the existing substrate-bound structure. The visualisation of enzymatic catalysis in action is challenging in structural biology and the ability to initiate the reactions of P450 enzymes, in crystallo by simply soaking crystals with H2 O2 will enable new structural biology methods and techniques to be applied to study their mechanism of action.


Assuntos
Sistema Enzimático do Citocromo P-450 , Oxigenases de Função Mista , Parabenos , Sistema Enzimático do Citocromo P-450/metabolismo , Catálise
2.
Arch Biochem Biophys ; 754: 109950, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430969

RESUMO

The cytochrome P450 family of heme metalloenzymes (CYPs) catalyse important biological monooxygenation reactions. Mycobacterium marinum contains a gene encoding a CYP105Q4 enzyme of unknown function. Other members of the CYP105 CYP family have key roles in bacterial metabolism including the synthesis of secondary metabolites. We produced and purified the cytochrome P450 enzyme CYP105Q4 to enable its characterization. Several nitrogen-donor atom-containing ligands were found to bind to CYP105Q4 generating type II changes in the UV-vis absorbance spectrum. Based on the UV-vis absorbance spectra none of the potential substrate ligands we tested with CYP105Q4 were able to displace the sixth distal aqua ligand from the heme, though there was evidence for binding of oleic acid and amphotericin B. The crystal structure of CYP105Q4 in the substrate-free form was determined in an open conformation. A computational structural similarity search (Dali) was used to find the most closely related characterized relatives within the CYP105 family. The structure of CYP105Q4 enzyme was compared to the GfsF CYP enzyme from Streptomyces graminofaciens which is involved in the biosynthesis of a macrolide polyketide. This structural comparison to GfsF revealed conformational changes in the helices and loops near the entrance to the substrate access channel. A disordered B/C loop region, usually involved in substrate recognition, was also observed.


Assuntos
Mycobacterium marinum , Mycobacterium marinum/genética , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Secundária de Proteína , Macrolídeos/química , Macrolídeos/metabolismo , Heme/química , Cristalografia por Raios X
3.
Arch Biochem Biophys ; 752: 109852, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072297

RESUMO

Rhodococcus globerulus (R. globerulus) was isolated from the soil beneath a Eucalypt tree. Metabolic growth studies revealed that R. globerulus was capable of living on certain monoterpenes, including 1,8-cineole and p-cymene, as sole sources of carbon and energy. Multiple P450 genes were identified in the R. globerulus genome that shared homology to known bacterial, monoterpene hydroxylating P450s. To date, two of these P450s have been expressed and characterised as 1,8-cineole (CYP176A1) and p-cymene (CYP108N12) monooxygenases that are believed to initiate the biodegradation of these terpenes. In this work, another putative P450 gene (CYP108N14) was identified in R. globerulus genome. Given its amino acid sequence identity to other monoterpene hydroxylating P450s it was hypothesised to catalyse monoterpene hydroxylation. These include CYP108A1 from Pseudomonas sp. (47 % identity, 68 % similarity) which hydroxylates α-terpineol, and CYP108N12 also from R. globerulus (62 % identity, 77 % similarity). Also present in the operon containing CYP108N14 were putative ferredoxin and ferredoxin reductase genes, suggesting a typical Class I P450 system. CYP108N14 was successfully over-expressed heterologously and purified, resulting in a good yield of CYP108N14 holoprotein. However, neither the ferredoxin nor ferredoxin reductase could be produced heterologously. Binding studies with CYP108N14 revealed a preference for the monoterpenes p-cymene, (R)-limonene, (S)-limonene, (S)-α-terpineol and (S)-4-terpineol. An active catalytic system was reconstituted with the non-native redox partners cymredoxin (from the CYP108N12 system) and putidaredoxin reductase (from the CYP101A1 system). CYP108N14 when supported by these redox partners was able to catalyse the hydroxylation of the five aforementioned substrates selectively at the methyl benzylic/allylic positions.


Assuntos
Monoterpenos Cicloexânicos , Cimenos , Sistema Enzimático do Citocromo P-450 , Monoterpenos , Rhodococcus , Monoterpenos/metabolismo , Eucaliptol , Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas , Limoneno
4.
Ecotoxicol Environ Saf ; 273: 116167, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447519

RESUMO

Mycotoxins are known environmental pollutants that may contaminate food and feed chains. Some mycotoxins are regulated in many countries to limit the trading of contaminated and harmful commodities. However, the so-called emerging mycotoxins are poorly understood and need to be investigated further. Fusaric acid is an emerging mycotoxin, noxious to plants and animals, but is known to be less toxic to plants when hydroxylated. The detoxification routes effective in animals have not been elucidated yet. In this context, this study integrated in silico and in vitro techniques to discover potential bioremediation routes to turn fusaric acid to its less toxic metabolites. The toxicodynamics of these forms in humans have also been addressed. An in silico screening process, followed by molecular docking and dynamics studies, identified CYP199A4 from the bacterium Rhodopseudomonas palustris HaA2 as a potential fusaric acid biotransforming enzyme. Its activity was confirmed in vitro. However, the effect of hydroxylation seemed to have a limited impact on the modelled toxicodynamics against human targets. This study represents a starting point to develop a hybrid in silico/in vitro pipeline to find bioremediation agents for other food, feed and environmental contaminants.


Assuntos
Ácido Fusárico , Micotoxinas , Animais , Humanos , Ácido Fusárico/toxicidade , Simulação de Acoplamento Molecular , Micotoxinas/toxicidade , Ração Animal/análise , Sistema Enzimático do Citocromo P-450
5.
J Am Chem Soc ; 145(16): 9207-9222, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042073

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases has demonstrated ability to facilitate hydroxylation, desaturation, sulfoxidation, epoxidation, heteroatom dealkylation, and carbon-carbon bond formation and cleavage (lyase) reactions. Seeking to study the carbon-carbon cleavage reaction of α-hydroxy ketones in mechanistic detail using a microbial P450, we synthesized α-hydroxy ketone probes based on the physiological substrate for a well-characterized benzoic acid metabolizing P450, CYP199A4. After observing low activity with wild-type CYP199A4, subsequent assays with an F182L mutant demonstrated enzyme-dependent C-C bond cleavage toward one of the α-hydroxy ketones. This C-C cleavage reaction was subject to an inverse kinetic solvent isotope effect analogous to that observed in the lyase activity of the human P450 CYP17A1, suggesting the involvement of a species earlier than Compound I in the catalytic cycle. Co-crystallization of F182L-CYP199A4 with this α-hydroxy ketone showed that the substrate bound in the active site with a preference for the (S)-enantiomer in a position which could mimic the topology of the lyase reaction in CYP17A1. Molecular dynamics simulations with an oxy-ferrous model of CYP199A4 revealed a displacement of the substrate to allow for oxygen binding and the formation of the lyase transition state proposed for CYP17A1. This demonstration that a correctly positioned α-hydroxy ketone substrate can realize lyase activity with an unusual inverse solvent isotope effect in an engineered microbial system opens the door for further detailed biophysical and structural characterization of CYP catalytic intermediates.


Assuntos
Liases , Humanos , Domínio Catalítico , Catálise , Simulação de Dinâmica Molecular
6.
Chemistry ; 29(50): e202301371, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37338048

RESUMO

The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,ß-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.


Assuntos
Ácido Benzoico , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Óxidos , Tiofenos
7.
Arch Biochem Biophys ; 737: 109554, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842492

RESUMO

The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.


Assuntos
Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium marinum/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Colesterol/metabolismo
8.
Arch Biochem Biophys ; 737: 109549, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801262

RESUMO

Rhodococcus globerulus is a metabolically active organism that has been shown to utilise eucalypt oil as its sole source of carbon and energy. This oil includes 1,8-cineole, p-cymene and limonene. Two identified and characterised cytochromes P450 (P450s) from this organism initiate the biodegradation of the monoterpenes 1,8-cineole (CYP176A1) and p-cymene (CYP108N12). Extensive characterisation has been completed for CYP176A1 and it has been successfully reconstituted with its immediate redox partner, cindoxin, and E. coli flavodoxin reductase. Two putative redox partner genes are encoded in the same operon as CYP108N12 and here the isolation, expression, purification, and characterisation of its specific [2Fe-2S] ferredoxin redox partner, cymredoxin is presented. Reconstitution of CYP108N12 with cymredoxin in place of putidaredoxin, a [2Fe-2S] redox partner of another P450, improves both the rate of electron transfer (from 13 ± 2 to 70 ± 1 µM NADH/min/µM CYP108N12) and the efficiency of NADH utilisation (the so-called coupling efficiency increases from 13% to 90%). Cymredoxin improves the catalytic ability of CYP108N12 in vitro. Aldehyde oxidation products of the previously identified substrates p-cymene (4-isopropylbenzaldehyde) and limonene (perillaldehyde) were observed in addition to major hydroxylation products 4-isopropylbenzyl alcohol and perillyl alcohol respectively. These further oxidation products had not previously been seen with putidaredoxin supported oxidation. Furthermore, when supported by cymredoxin CYP108N12 is able to oxidise a wider range of substrates than previously reported. These include o-xylene, α-terpineol, (-)-carveol and thymol yielding o-tolylmethanol, 7-hydroxyterpineol, (4R)-7-hydroxycarveol and 5-hydroxymethyl-2-isopropylphenol, respectively. Cymredoxin is also capable of supporting CYP108A1 (P450terp) and CYP176A1 activity, allowing them to catalyse the hydroxylation of their native substrates α-terpineol to 7-hydroxyterpineol and 1,8-cineole to 6ß-hydroxycineole respectively. These results indicate that cymredoxin not only improves the catalytic capability of CYP108N12 but can also support the activity of other P450s and prove useful for their characterisation.


Assuntos
Escherichia coli , Ferredoxinas , Eucaliptol , Escherichia coli/genética , Limoneno , NAD/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
9.
Org Biomol Chem ; 21(48): 9647-9658, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38037692

RESUMO

Norcarane is a mechanistic probe of monooxygenase enzymes that is able to detect the presence of cationic or radical intermediates. The addition of substituents around the bicycloheptane ring of the norcarane scaffold can assist in improving enzyme binding affinity and thus improve the regioselectivity of oxidation. Here we prepare in three-step, diastereoselective syntheses, ten norcaranes monosubstituted α to the cyclopropane as advanced probes. Four of these compounds were examined in enzyme binding experiments to evaluate their potential as probe substrates. Additionally, 19 potential products of enzymatic oxidation were generated via two additional synthetic steps for use as product standards in future studies.


Assuntos
Oxigenases de Função Mista , Terpenos , Oxirredução , Terpenos/química , Oxigenases de Função Mista/metabolismo , Hidroxilação
10.
Chemistry ; 28(49): e202201366, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35712785

RESUMO

Cytochrome P450 monooxygenase enzymes are versatile catalysts, which have been adapted for multiple applications in chemical synthesis. Mutation of a highly conserved active site threonine to a glutamate can convert these enzymes into peroxygenases that utilise hydrogen peroxide (H2 O2 ). Here, we use the T252E-CYP199A4 variant to study peroxide-driven oxidation activity by using H2 O2 and urea-hydrogen peroxide (UHP). We demonstrate that the T252E variant has a higher stability to H2 O2 in the presence of substrate that can undergo carbon-hydrogen abstraction. This peroxygenase variant could efficiently catalyse O-demethylation and an enantioselective epoxidation reaction (94 % ee). Neither the monooxygenase nor peroxygenase pathways of the P450 demonstrated a significant kinetic isotope effect (KIE) for the oxidation of deuterated substrates. These new peroxygenase variants offer the possibility of simpler cytochrome P450 systems for selective oxidations. To demonstrate this, a light driven H2 O2 generating system was used to support efficient product formation with this peroxygenase enzyme.


Assuntos
Peróxido de Hidrogênio , Oxigênio , Sistema Enzimático do Citocromo P-450/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Oxirredução
11.
Chemistry ; 28(72): e202202428, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36169207

RESUMO

Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C-H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2 O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2 O2 complex which would be more abundant in the peroxide-driven reactions.


Assuntos
Compostos Férricos , Oxidantes , Oxidantes/química , Sistema Enzimático do Citocromo P-450/metabolismo , Heme/química , Catálise
12.
Chemistry ; 28(67): e202201895, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36043399

RESUMO

The cytochrome P450 (CYP) family of heme monooxygenases catalyse the selective oxidation of C-H bonds under ambient conditions. The CYP199A4 enzyme from Rhodopseudomonas palustris catalyses aliphatic oxidation of 4-cyclohexylbenzoic acid but not the aromatic oxidation of 4-phenylbenzoic acid, due to the distinct mechanisms of aliphatic and aromatic oxidation. The aromatic substrates 4-benzyl-, 4-phenoxy- and 4-benzoyl-benzoic acid and methoxy-substituted phenylbenzoic acids were assessed to see if they could achieve an orientation more amenable to aromatic oxidation. CYP199A4 could catalyse the efficient benzylic oxidation of 4-benzylbenzoic acid. The methoxy-substituted phenylbenzoic acids were oxidatively demethylated with low activity. However, no aromatic oxidation was observed with any of these substrates. Crystal structures of CYP199A4 with 4-(3'-methoxyphenyl)benzoic acid demonstrated that the substrate binding mode was like that of 4-phenylbenzoic acid. 4-Phenoxy- and 4-benzoyl-benzoic acid bound with the ether or ketone oxygen atom hydrogen-bonded to the heme aqua ligand. We also investigated whether the substitution of phenylalanine residues in the active site could permit aromatic hydroxylation. Mutagenesis of the F298 residue to a valine did not significantly alter the substrate binding position or enable the aromatic oxidation of 4-phenylbenzoic acid; however the F182L mutant was able to catalyse 4-phenylbenzoic acid oxidation generating 2'-hydroxy-, 3'-hydroxy- and 4'-hydroxy metabolites in a 83 : 9 : 8 ratio, respectively. Molecular dynamics simulations, in which the distance and angle of attack were considered, demonstrated that in the F182L variant, in contrast to the wild-type enzyme, the phenyl ring of 4-phenylbenzoic acid attained a productive geometry for aromatic oxidation to occur.


Assuntos
Proteínas de Bactérias , Sistema Enzimático do Citocromo P-450 , Hidroxilação , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia de Proteínas , Heme/química , Oxirredução , Benzoatos/química
13.
Inorg Chem ; 61(1): 236-245, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910500

RESUMO

The cytochrome P450 (CYP) superfamily of heme monooxygenases is involved in a range of important chemical biotransformations across nature. Azole-containing molecules have been developed as drugs that bind to the heme center of these enzymes, inhibiting their function. The optical spectrum of CYP enzymes after the addition of these inhibitors is used to assess how the molecules bind. Here we use the bacterial CYP199A4 enzyme, from Rhodopseudomonas palustris HaA2, to compare how imidazolyl and triazolyl inhibitors bind to ferric and ferrous heme. 4-(Imidazol-1-yl)benzoic acid induced a red shift in the Soret wavelength (424 nm) in the ferric enzyme along with an increase and a decrease in the intensities of the δ and α bands, respectively. 4-(1H-1,2,4-Triazol-1-yl)benzoic acid binds to CYP199A4 with a 10-fold lower affinity and induces a smaller red shift in the Soret band. The crystal structures of CYP199A4 with these two inhibitors confirmed that these differences in the optical spectra were due to coordination of the imidazolyl ligand to the ferric Fe, but the triazolyl inhibitor interacts with, rather than displaces, the ferric aqua ligand. Additional water molecules were present in the active site of 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound CYP199A4. The space required to accommodate these additional water molecules in the active site necessitates changes in the position of the hydrophobic phenylalanine 298 residue. Upon reduction of the heme, the imidazole-based inhibitor Fe-N ligation was not retained. A 5-coordinate heme was also the predominant species in 4-(1H-1,2,4-triazol-1-yl)benzoic acid-bound ferrous CYP199A4, but there was an obvious shoulder at 447 nm indicative of some degree of Fe-N coordination. Rather than inhibit CYP199A4, 4-(imidazol-1-yl)benzoic acid was a substrate and was oxidized to generate a metabolite derived from ring opening of the imidazolyl ring: 4-[[2-(formylamino)acetyl]amino]benzoic acid.


Assuntos
Sistema Enzimático do Citocromo P-450
14.
J Biol Chem ; 295(23): 7894-7904, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335509

RESUMO

The ATP-grasp superfamily of enzymes shares an atypical nucleotide-binding site known as the ATP-grasp fold. These enzymes are involved in many biological pathways in all domains of life. One ATP-grasp enzyme, d-alanine-d-alanine ligase (Ddl), catalyzes ATP-dependent formation of the d-alanyl-d-alanine dipeptide essential for bacterial cell wall biosynthesis and is therefore an important antibiotic drug target. Ddl is activated by the monovalent cation (MVC) K+, but despite its clinical relevance and decades of research, how this activation occurs has not been elucidated. We demonstrate here that activating MVCs bind adjacent to the active site of Ddl from Thermus thermophilus and used a combined biochemical and structural approach to characterize MVC activation. We found that TtDdl is a type II MVC-activated enzyme, retaining activity in the absence of MVCs. However, the efficiency of TtDdl increased ∼20-fold in the presence of activating MVCs, and it was maximally activated by K+ and Rb+ ions. A strict dependence on ionic radius of the MVC was observed, with Li+ and Na+ providing little to no TtDdl activation. To understand the mechanism of MVC activation, we solved crystal structures of TtDdl representing distinct catalytic stages in complex with K+, Rb+, or Cs+ Comparison of these structures with apo TtDdl revealed no evident conformational change on MVC binding. Of note, the identified MVC binding site is structurally conserved within the ATP-grasp superfamily. We propose that MVCs activate Ddl by altering the charge distribution of its active site. These findings provide insight into the catalytic mechanism of ATP-grasp enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Metais Alcalinos/metabolismo , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/química , Biocatálise , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Metais Alcalinos/química , Modelos Moleculares , Peptídeo Sintases/química , Thermus thermophilus/enzimologia
15.
Chemistry ; 27(59): 14765-14777, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34350662

RESUMO

The serine 244 to aspartate (S244D) variant of the cytochrome P450 enzyme CYP199A4 was used to expand its substrate range beyond benzoic acids. Substrates, in which the carboxylate group of the benzoic acid moiety is replaced were oxidised with high activity by the S244D mutant (product formation rates >60 nmol.(nmol-CYP)-1 .min-1 ) and with total turnover numbers of up to 20,000. Ethyl α-hydroxylation was more rapid than methyl oxidation, styrene epoxidation and S-oxidation. The S244D mutant catalysed the ethyl hydroxylation, epoxidation and sulfoxidation reactions with an excess of one stereoisomer (in some instances up to >98 %). The crystal structure of 4-methoxybenzoic acid-bound CYP199A4 S244D showed that the active site architecture and the substrate orientation were similar to that of the WT enzyme. Overall, this work demonstrates that CYP199A4 can catalyse the stereoselective hydroxylation, epoxidation or sulfoxidation of substituted benzene substrates under mild conditions resulting in more sustainable transformations using this heme monooxygenase enzyme.


Assuntos
Benzeno , Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Oxirredução , Especificidade por Substrato
16.
Biochemistry ; 59(9): 1038-1050, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32058707

RESUMO

The cytochrome P450 superfamily of heme monooxygenases catalyzes important chemical reactions across nature. The changes in the optical spectra of these enzymes, induced by the addition of substrates or inhibitors, are critical for assessing how these molecules bind to the P450, enhancing or inhibiting the catalytic cycle. Here we use the bacterial CYP199A4 enzyme (Uniprot entry Q2IUO2), from Rhodopseudomonas palustris HaA2, and a range of substituted benzoic acids to investigate different binding modes. 4-Methoxybenzoic acid elicits an archetypal type I spectral response due to a ≥95% switch from the low- to high-spin state with concomitant dissociation of the sixth aqua ligand. 4-(Pyridin-3-yl)- and 4-(pyridin-2-yl)benzoic acid induced different type II ultraviolet-visible (UV-vis) spectral responses in CYP199A4. The former induced a greater red shift in the Soret wavelength (424 nm vs 422 nm) along with a larger overall absorbance change and other differences in the α-, ß-, and δ-bands. There were also variations in the ferrous UV-vis spectra of these two substrate-bound forms with a spectrum indicative of Fe-N bond formation with 4-(pyridin-3-yl)benzoic acid. The crystal structures of CYP199A4, with the pyridinyl compounds bound, revealed that while the nitrogen of 4-(pyridin-3-yl)benzoic acid is coordinated to the heme, with 4-(pyridin-2-yl)benzoic acid an aqua ligand remains. Continuous wave and pulse electron paramagnetic resonance data in frozen solution revealed that the substrates are bound in the active site in a form consistent with the crystal structures. The redox potential of each CYP199A4-substrate combination was measured, allowing correlation among binding modes, spectroscopic properties, and the observed biochemical activity.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/química , Benzoatos/metabolismo , Sítios de Ligação , Heme/química , Cinética , Ligantes , Modelos Moleculares , Ligação Proteica/fisiologia , Rodopseudomonas/enzimologia , Rodopseudomonas/metabolismo , Especificidade por Substrato
17.
J Biol Inorg Chem ; 25(4): 583-596, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248305

RESUMO

The cytochrome P450 heme monooxygenases commonly use an acid-alcohol pair of residues, within the I-helix, to activate iron-bound dioxygen. This work aims to clarify conflicting reports on the importance of the alcohol functionality in this process. Mutants of the P450, CYP199A4 (CYP199A4D251N and CYP199A4T252A), were prepared, characterised and their crystal structures were solved. The acid residue of CYP199A4 is not part of a salt bridge network, a key feature of paradigmatic model system P450cam. Instead, there is a direct proton delivery network, via a chain of water molecules, extending to the surface. Nevertheless, CYP199A4D251N dramatically reduced the activity of the enzyme consistent with a role in proton delivery. CYP199A4T252A decreased the coupling efficiency of the enzyme with a concomitant increase in the hydrogen peroxide uncoupling pathway. However, the effect of this mutation was much less pronounced than reported with P450cam. Its crystal structures revealed fewer changes at the I-helix, compared to the P450cam system. The structural changes observed within the I-helix of P450cam during oxygen activation do not seem to be required in this P450. These differences are due to the presence of a second threonine residue at position 253, which is absent in P450cam. This threonine forms part of the hydrogen bonding network, resulting in subtle structural changes and is also present across the majority of the P450 superfamily. Overall, the results suggest that while the acid-alcohol pair is important for dioxygen activation this process and the method of proton delivery can differ across P450s.Graphic abstract.


Assuntos
Álcoois/química , Benzoatos/química , Sistema Enzimático do Citocromo P-450/química , Oxigênio/química , Álcoois/metabolismo , Benzoatos/metabolismo , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Oxigênio/metabolismo
18.
J Am Chem Soc ; 141(50): 19688-19699, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31739667

RESUMO

The highly strained cubylmethyl radical undergoes one of the fastest radical rearrangements known (reported k = 2.9 × 1010 s-1 at 25 °C) through scission of two bonds of the cube. The rearrangement has previously been used as a mechanistic probe to detect radical-based pathways in enzyme-catalyzed C-H oxidations. This paper reports the discovery of highly selective cytochrome P450-catalyzed methylcubane oxidations which notionally proceed via cubylmethyl radical intermediates yet are remarkably free of rearrangement. The bacterial cytochrome P450 CYP101B1 from Novosphingobium aromaticivorans DSM 12444 is found to hydroxylate the methyl group of a range of methylcubane substrates containing a regio-directing carbonyl functionality at C-4. Unlike other reported P450-catalyzed methylcubane oxidations, the designed methylcubanes are hydroxylated with high efficiency and selectivity, giving cubylmethanols in yields of up to 93%. The lack of cubane core ring-opening implies that the cubylmethyl radicals formed during these CYP101B1-catalyzed hydroxylations must have very short lifetimes, of just a few picoseconds, which are too short for them to manifest the side reactivity characteristic of a fully equilibrated P450 intermediate. We propose that the apparent ultrafast radical rebound can be explained by a mechanism in which C-H abstraction and C-O bond formation are merged into a dynamically coupled process, effectively bypassing a discrete radical intermediate. Related dynamical phenomena can be proposed to predict how P450s may achieve various other modes of reactivity by controlling the formation and fate of radical intermediates. In principle, dynamical ideas and two-state reactivity are each individually able to explain apparent ultrashort radical lifetimes in P450 catalysis, but they are best considered together.

19.
J Am Chem Soc ; 141(36): 14298-14305, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31426638

RESUMO

Protection of biological assemblies is critical to applications in biotechnology, increasing the durability of enzymes in biocatalysis or potentially stabilizing biotherapeutics during transport and use. Here we show that a porous hydrogen-bonded organic framework (HOF) constructed from water-soluble tetra-amidinium (1·Cl4) and tetracarboxylate (2) building blocks can encapsulate and stabilize biomolecules to elevated temperature, proteolytic and denaturing agents, and extend the operable pH range for catalase activity. The HOF, which readily retains water within its framework structure, can also protect and retain the activity of enzymes such as alcohol oxidase, that are inactive when encapsulated within zeolitic imidazolate framework (ZIF) materials. Such HOF coatings could provide valid alternative materials to ZIFs: they are metal free, possess larger pore apertures, and are stable over a wider, more biologically relevant pH range.


Assuntos
Oxirredutases do Álcool/química , Amidas/química , Ácidos Carboxílicos/química , Oxirredutases do Álcool/metabolismo , Amidas/metabolismo , Ácidos Carboxílicos/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Imidazóis/química , Imidazóis/metabolismo , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Água/química , Zeolitas/química , Zeolitas/metabolismo
20.
J Am Chem Soc ; 141(6): 2348-2355, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636404

RESUMO

Encapsulation of biomacromolecules in metal-organic frameworks (MOFs) can preserve biological functionality in harsh environments. Despite the success of this approach, termed biomimietic mineralization, limited consideration has been given to the chemistry of the MOF coating. Here, we show that enzymes encapsulated within hydrophilic MAF-7 or ZIF-90 retain enzymatic activity upon encapsulation and when exposed to high temperatures, denaturing or proteolytic agents, and organic solvents, whereas hydrophobic ZIF-8 affords inactive catalase and negligible protection to urease.


Assuntos
Enzimas Imobilizadas/química , Interações Hidrofóbicas e Hidrofílicas , Estruturas Metalorgânicas/química , Cápsulas , Catalase/química , Catalase/metabolismo , Enzimas Imobilizadas/metabolismo , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Temperatura , Urease/química , Urease/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA