Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(31): e202201004, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491237

RESUMO

The selective conversion of syngas to higher alcohols is an attractive albeit elusive route in the quest for effective production of chemicals from alternative carbon resources. We report the tandem integration of solid cobalt Fischer-Tropsch and molecular hydroformylation catalysts in a one-pot slurry-phase process. Unprecedented selectivities (>50 wt %) to C2+ alcohols are achieved at CO conversion levels >70 %, alongside negligible CO2 side-production. The efficient overall transformation is enabled by catalyst engineering, bridging gaps in operation temperature and intrinsic selectivity which have classically precluded integration of these reactions in a single conversion step. Swift capture of 1-olefin Fischer-Tropsch primary products by the molecular hydroformylation catalyst, presumably within the pores of the solid catalyst is key for high alcohol selectivity. The results underscore that controlled cooperation between solid aggregate and soluble molecular metal catalysts, which pertain to traditionally dichotomic realms of heterogeneous and homogeneous catalysis, is a promising blueprint toward selective conversion processes.

2.
ChemSusChem ; : e202400647, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853691

RESUMO

We report the catalytic synthesis of 3-hydroxy-2-butanon (acetoin) from acetaldehyde as a key step in the synthesis of C4-molecules from ethanol. Facile C-C-bond formation at the α-carbon of the C2 building block is achieved using an N-heterocyclic carbene (NHC) catalyst. The immobilization of the catalyst on a Merrifield's peptide resin and its spectroscopic characterisation using solid-state Nuclear Magnetic Resonance (NMR) is described herein. The immobilization of the NHC catalyst allows for process intensification steps and the reported catalytic system was subjected to batch recycling as well as continuous flow experiments. The robustness of the catalytic system was shown over a maximum of 10 h time-on-stream. Overall, high selectivity S > 90% was observed. The observed deactivation of the catalyst with increasing time-on-stream is explained by ex-situ1H solution-state, as well as 13C and 15N solid-state NMR spectra allowing us to develop a deeper understanding of the underlying decomposition mechanism of the catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA