Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Zool B Mol Dev Evol ; 336(3): 300-314, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32419346

RESUMO

Development and evolution are dynamical processes under the continuous control of organismic and environmental factors. Generic physical processes, associated with biological materials and certain genes or molecules, provide a morphological template for the evolution and development of organism forms. Generic dynamical behaviors, associated with recurring network motifs, provide a temporal template for the regulation and coordination of biological processes. The role of generic physical processes and their associated molecules in development is the topic of the dynamical patterning module (DPM) framework. The role of generic dynamical behaviors in biological regulation is studied via the identification of the associated network motifs (NMs). We propose a joint DPM-NM perspective on the emergence and regulation of multicellularity focusing on a multicellular aggregative bacterium, Myxococcus xanthus. Understanding M. xanthus development as a dynamical process embedded in a physical substrate provides novel insights into the interaction between developmental regulatory networks and generic physical processes in the evolutionary transition to multicellularity.


Assuntos
Evolução Biológica , Myxococcus xanthus/crescimento & desenvolvimento , Padronização Corporal , Morfogênese
2.
J Exp Zool B Mol Dev Evol ; 334(1): 14-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31829529

RESUMO

How specific environmental contexts contribute to the robustness and variation of developmental trajectories and evolutionary transitions is a central point in Ecological Evolutionary Developmental Biology ("Eco-Evo-Devo"). However, the articulation of ecological, evolutionary and developmental processes into integrative frameworks has been elusive, partly because standard experimental designs neglect or oversimplify ecologically meaningful contexts. Microbial models are useful to expose and discuss two possible sources of bias associated with conventional gene-centered experimental designs: the use of laboratory strains and standard laboratory environmental conditions. We illustrate our point by showing how contrasting developmental phenotypes in Myxococcus xanthus depend on the joint variation of temperature and substrate stiffness. Microorganismal development can provide key information for better understanding the role of environmental conditions in the evolution of developmental variation, and to overcome some of the limitations associated with current experimental approaches.


Assuntos
Evolução Biológica , Ecossistema , Modelos Biológicos , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , Viés , Projetos de Pesquisa
3.
J Exp Bot ; 71(3): 768-777, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31563945

RESUMO

Plasmodesmata traverse cell walls, generating connections between neighboring cells. They allow intercellular movement of molecules such as transcription factors, hormones, and sugars, and thus create a symplasmic continuity within a tissue. One important factor that determines plasmodesmal permeability is their aperture, which is regulated during developmental and physiological processes. Regulation of aperture has been shown to affect developmental events such as vascular differentiation in the root, initiation of lateral roots, or transition to flowering. Extensive research has unraveled molecular factors involved in the regulation of plasmodesmal permeability. Nevertheless, many plant developmental processes appear to involve feedbacks mediated by mechanical forces, raising the question of whether mechanical forces and plasmodesmal permeability affect each other. Here, we review experimental data on how one of these forces, turgor pressure, and plasmodesmal permeability may mutually influence each other during plant development, and we discuss the questions raised by these data. Addressing such questions will improve our knowledge of how cellular patterns emerge during development, shedding light on the evolution of complex multicellular plants.


Assuntos
Pressão Osmótica , Desenvolvimento Vegetal , Plasmodesmos/fisiologia , Pressão Hidrostática , Permeabilidade
4.
Phys Biol ; 15(3): 036002, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29393068

RESUMO

Intracellular polarisation of auxin efflux carriers is crucial for understanding how auxin gradients form in plants. The polarisation dynamics of auxin efflux carriers PIN-FORMED (PIN) depends on both biomechanical forces as well as chemical, molecular and genetic factors. Biomechanical forces have shown to affect the localisation of PIN transporters to the plasma membrane. We propose a physico-genetic module of PIN polarisation that integrates biomechanical, molecular, and cellular processes as well as their non-linear interactions. The module was implemented as a discrete Boolean model and then approximated to a continuous dynamic system, in order to explore the relative contribution of the factors mediating PIN polarisation at the scale of single cell. Our models recovered qualitative behaviours that have been experimentally observed and enable us to predict that, in the context of PIN polarisation, the effects of the mechanical forces can predominate over the activity of molecular factors such as the GTPase ROP6 and the ROP-INTERACTIVE CRIB MOTIF-CONTAINING PROTEIN RIC1.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana Transportadoras/genética , Arabidopsis/citologia , Proteínas de Arabidopsis/metabolismo , Redes Reguladoras de Genes , Proteínas de Membrana Transportadoras/metabolismo , Modelos Genéticos
5.
Dev Growth Differ ; 60(2): 121-129, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29441522

RESUMO

Myxococcus xanthus is a myxobacterium that exhibits aggregation and cellular differentiation during the formation of fruiting bodies. Therefore, it has become a valuable model system to study the transition to multicellularity via cell aggregation. Although there is a vast set of experimental information for the development on M. xanthus, the dynamics behind cell-fate determination in this organism's development remain unclear. We integrate the currently available evidence in a mathematical network model that allows to test the set of molecular elements and regulatory interactions that are sufficient to account for the specification of the cell types that are observed in fruiting body formation. Besides providing a dynamic mechanism for cell-fate determination in the transition to multicellular aggregates of M. xanthus, this model enables the postulation of specific mechanisms behind some experimental observations for which no explanations have been provided, as well as new regulatory interactions that can be experimentally tested. Finally, this model constitutes a formal basis on which the continuously emerging data for this system can be integrated and interpreted.


Assuntos
Modelos Biológicos , Myxococcus xanthus/citologia , Myxococcus xanthus/crescimento & desenvolvimento , Movimento
7.
J Exp Zool B Mol Dev Evol ; 328(1-2): 165-178, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28217903

RESUMO

The transition to multicellularity, recognized as one the major transitions in evolution, has occurred independently several times. While multicellular development has been extensively studied in zygotic organisms including plant and animal groups, just a few aggregative multicellular organisms have been employed as model organisms for the study of multicellularity. Studying different evolutionary origins and modes of multicellularity enables comparative analyses that can help identifying lineage-specific aspects of multicellular evolution and generic factors and mechanisms involved in the transition to multicellularity. Among aggregative multicellular organisms, myxobacteria are a valuable system to explore the particularities that aggregation confers to the evolution of multicellularity and mechanisms shared with clonal organisms. Moreover, myxobacteria species develop fruiting bodies displaying a range of morphological diversity. In this review, we aim to synthesize diverse lines of evidence regarding myxobacteria development and discuss them in the context of Evo-Devo concepts and approaches. First, we briefly describe the developmental processes in myxobacteria, present an updated comparative analysis of the genes involved in their developmental processes and discuss these and other lines of evidence in terms of co-option and developmental system drift, two concepts key to Evo-Devo studies. Next, as has been suggested from Evo-Devo approaches, we discuss how broad comparative studies and integration of diverse genetic, physicochemical, and environmental factors into experimental and theoretical models can further our understanding of myxobacterial development, phenotypic variation, and evolution.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Myxococcales/citologia , Myxococcales/genética
8.
J Exp Zool B Mol Dev Evol ; 328(1-2): 5-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491339

RESUMO

Famous for its blind cavefish and Darwin's finches, Latin America is home to some of the richest biodiversity hotspots of our planet. The Latin American fauna and flora inspired and captivated naturalists from the nineteenth and twentieth centuries, including such notable pioneers such as Fritz Müller, Florentino Ameghino, and Léon Croizat who made a significant contribution to the study of embryology and evolutionary thinking. But, what are the historical and present contributions of the Latin American scientific community to Evo-Devo? Here, we provide the first comprehensive overview of the Evo-Devo laboratories based in Latin America and describe current lines of research based on endemic species, focusing on body plans and patterning, systematics, physiology, computational modeling approaches, ecology, and domestication. Literature searches reveal that Evo-Devo in Latin America is still in its early days; while showing encouraging indicators of productivity, it has not stabilized yet, because it relies on few and sparsely distributed laboratories. Coping with the rapid changes in national scientific policies and contributing to solve social and health issues specific to each region are among the main challenges faced by Latin American researchers. The 2015 inaugural meeting of the Pan-American Society for Evolutionary Developmental Biology played a pivotal role in bringing together Latin American researchers eager to initiate and consolidate regional and worldwide collaborative networks. Such networks will undoubtedly advance research on the extremely high genetic and phenotypic biodiversity of Latin America, bound to be an almost infinite source of amazement and fascinating findings for the Evo-Devo community.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Pesquisa , Animais , América Latina
9.
Plant Physiol ; 161(2): 918-30, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23209126

RESUMO

The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Proteoma/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Compostos de Benzil , Citocininas/farmacologia , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Cinetina/metabolismo , Cinetina/farmacologia , Modelos Biológicos , Modelos Genéticos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Proteoma/genética , Purinas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Evolution ; 78(3): 480-496, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38150399

RESUMO

Greater diversity in functional morphology should be associated with the evolution of greater ontogenetic diversity, an expectation difficult to test in most long-lived wild organisms. In the cells derived from the wood meristem (vascular cambium), plants provide extraordinary systems for reconstructing ontogenies in often long-lived organisms. The vascular cambium produces files of cells from the stem center to the periphery, with each cambial derivative "deciding" which of four cell types it differentiates into. Wood cell files remain in place, allowing tracing of the ontogenetic "decisions" taken throughout the life of a stem. We compared cell files from the Pedilanthus clade (genus Euphorbia), which span a range of growth forms from small trees and shrubs of tropical habitats to desert succulents. Using language theory, we represented wood cell types as "letters" and combinations of cell types in cell files as "words," allowing us to measure the diversity of decisions based on word frequency matrices. We also used information content metrics to compare levels of predictability in "decision-making." Our analyses identified a wider array of developmental decisions in woody trees as compared to succulent shrubs, illustrating ways that woody plants provide unparalleled systems for studying the evolution of ontogeny in long-lived, non-model species.


Assuntos
Plantas , Madeira , Câmbio/anatomia & histologia , Árvores/anatomia & histologia , Ecossistema
11.
Cell Death Dis ; 15(3): 182, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429264

RESUMO

Caspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death. Specifically, we show that depletion of caspase-2 leads to the downregulation of stress response genes including SESN2, HMOX1, SLC7A11, and sensitizes mutant-p53 cancer cells to cell death induced by various ferroptosis-inducing compounds. Importantly, the canonical catalytic activity of caspase-2 is not required for its role and suggests that caspase-2 regulates ferroptosis via non-proteolytic interaction with other proteins. Using an unbiased BioID proteomics screen, we identified novel caspase-2 interacting proteins (including heat shock proteins and co-chaperones) that regulate cellular responses to stress. Finally, we demonstrate that caspase-2 limits chaperone-mediated autophagic degradation of GPX4 to promote the survival of mutant-p53 cancer cells. In conclusion, we document a novel role for caspase-2 as a negative regulator of ferroptosis in cells with mutant p53. Our results provide evidence for a novel function of caspase-2 in cell death regulation and open potential new avenues to exploit ferroptosis in cancer therapy.


Assuntos
Caspase 2 , Ferroptose , Caspase 2/genética , Morte Celular/genética , Chaperonas Moleculares , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Proteína Supressora de Tumor p53/genética , Ferroptose/genética
12.
Semin Cell Dev Biol ; 21(1): 108-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19922810

RESUMO

The ABC model postulates that expression combinations of three classes of genes (A, B and C) specify the four floral organs at early stages of flower development. This classic model provides a solid framework to study flower development and has been the foundation for multiple studies in different plant species, as well as for new evolutionary hypotheses. Nevertheless, it has been shown that in spite of being necessary, these three gene classes are not sufficient for flower organ specification. Rather, flower organ specification depends on complex interactions of several genes, and probably other non-genetic factors. Being useful to study systems of complex interactions, mathematical and computational models have enlightened the origin of the A, B and C stereotyped and robust expression patterns and the process of early flower morphogenesis. Here, we present a brief introduction to basic modeling concepts and techniques and review the results that these models have rendered for the particular case of the Arabidopsis thaliana flower organ specification. One of the main results is the uncovering of a robust functional module that is sufficient to recover the gene configurations characterizing flower organ primordia. Another key result is that the temporal sequence with which such gene configurations are attained may be recovered only by modeling the aforementioned functional module as a noisy or stochastic system. Finally, modeling approaches enable testable predictions regarding the role of non-genetic factors (noise, mechano-elastic forces, etc.) in development. These predictions, along with some perspectives for future work, are also reviewed and discussed.


Assuntos
Epigênese Genética , Flores , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Modelos Teóricos , Morfogênese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Mecânico
13.
J Exp Zool B Mol Dev Evol ; 318(3): 209-23, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22544718

RESUMO

Pigment patterning in animals generally occurs during early developmental stages and has ecological, physiological, ethological, and evolutionary significance. Despite the relative simplicity of color patterns, their emergence depends upon multilevel complex processes. Thus, theoretical models have become necessary tools to further understand how such patterns emerge. Recent studies have reevaluated the importance of epigenetic, as well as genetic factors in developmental pattern formation. Yet epigenetic phenomena, specially those related to physical constraints that might be involved in the emergence of color patterns, have not been fully studied. In this article, we propose a model of color patterning in which epigenetic aspects such as cell migration, cell-tissue interactions, and physical and mechanical phenomena are central. This model considers that motile cells embedded in a fibrous, viscoelastic matrix-mesenchyme-can deform it in such a way that tension tracks are formed. We postulate that these tracks act, in turn, as guides for subsequent cell migration and establishment, generating long-range phenomenological interactions. We aim to describe some general aspects of this developmental phenomenon with a rather simple mathematical model. Then we discuss our model in the context of available experimental and morphological evidence for reptiles, amphibians, and fishes, and compare it with other patterning models. We also put forward novel testable predictions derived from our model, regarding, for instance, the localization of the postulated tension tracks, and we propose new experiments. Finally, we discuss how the proposed mechanism could constitute a dynamic patterning module accounting for pattern formation in many animal lineages.


Assuntos
Epigênese Genética , Modelos Genéticos , Pigmentos Biológicos , Animais
14.
Microorganisms ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36144367

RESUMO

Despite the central role of microorganisms in soil fertility, little understanding exists regarding the impact of management practices and soil microbial diversity on soil processes. Strong correlations among soil microbial composition, management practices, and microbially mediated processes have been previously shown. However, limited integration of the different parameters has hindered our understanding of agroecosystem functioning. Multivariate analyses of these systems allow simultaneous evaluation of the parameters and can lead to hypotheses on the microbial groups involved in specific nutrient transformations. In the present study, using a multivariate approach, we investigated the effect of microbial composition (16SrDNA sequencing) and soil properties in carbon mineralization (CMIN) (BIOLOG™, Hayward, CA, USA) across different management categories on coffee agroecosystems in Mexico. Results showed that (i) changes in soil physicochemical variables were related to management, not to region, (ii) microbial composition was associated with changes in management intensity, (iii) specific bacterial groups were associated with different management categories, and (iv) there was a broader utilization range of carbon sources in non-managed plots. The identification of specific bacterial groups, management practices, and soil parameters, and their correlation with the utilization range of carbon sources, presents the possibility to experimentally test hypotheses on the interplay of all these components and further our understanding of agroecosystem functioning and sustainable management.

15.
BMC Bioinformatics ; 12: 490, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22192526

RESUMO

BACKGROUND: In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. RESULTS: We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche.There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs.Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. CONCLUSIONS: We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Software , Animais , Arabidopsis/citologia , Arabidopsis/metabolismo , Humanos , Lógica
16.
J Exp Zool B Mol Dev Evol ; 316(4): 241-53, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21259417

RESUMO

The leaf and root epidermis in Arabidopsis provide ideal systems in which to explore the mechanisms that underlie the patterned assignment of cell fates during development. Extensive experimental studies have uncovered a complex interlocked feedback network that operates within the epidermis to coordinate the choice between hair and nonhair fates. A number of recent studies using mathematical models have begun to study this network, highlighting new mechanisms that have subsequently been confirmed in model-directed experiments. These studies illustrate the potential of integrated modeling and experimentation to shed new light on developmental processes. Moreover, these models enable systems-level comparative analyses that may help understand the origin and role of properties, such as robustness and redundancy in developmental systems and, concomitantly, the evolution of development itself.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular/fisiologia , Epiderme/crescimento & desenvolvimento , Redes Reguladoras de Genes/fisiologia , Modelos Biológicos , Folhas de Planta/citologia , Raízes de Plantas/citologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo
17.
Mol Cancer Ther ; 20(10): 1858-1867, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34315763

RESUMO

APR-246 (eprenetapopt) is in clinical development with a focus on hematologic malignancies and is promoted as a mutant-p53 reactivation therapy. Currently, the detection of at least one TP53 mutation is an inclusion criterion for patient selection into most APR-246 clinical trials. Preliminary results from our phase Ib/II clinical trial investigating APR-246 combined with doublet chemotherapy [cisplatin and 5-fluorouracil (5-FU)] in metastatic esophageal cancer, together with previous preclinical studies, indicate that TP53 mutation status alone may not be a sufficient biomarker for APR-246 response. This study aims to identify a robust biomarker for response to APR-246. Correlation analysis of the PRIMA-1 activity (lead compound to APR-246) with mutational status, gene expression, protein expression, and metabolite abundance across over 700 cancer cell lines (CCL) was performed. Functional validation and a boutique siRNA screen of over 850 redox-related genes were also conducted. TP53 mutation status was not consistently predictive of response to APR-246. The expression of SLC7A11, the cystine/glutamate transporter, was identified as a superior determinant of response to APR-246. Genetic regulators of SLC7A11, including ATF4, MDM2, wild-type p53, and c-Myc, were confirmed to also regulate cancer-cell sensitivity to APR-246. In conclusion, SLC7A11 expression is a broadly applicable determinant of sensitivity to APR-246 across cancer and should be utilized as the key predictive biomarker to stratify patients for future clinical investigation of APR-246.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutação , Proteína Supressora de Tumor p53/genética , Sistema y+ de Transporte de Aminoácidos/genética , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Cisplatino/administração & dosagem , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Fluoruracila/administração & dosagem , Humanos , Metaboloma , Prognóstico , Proteoma , Quinuclidinas/administração & dosagem , Transcriptoma , Células Tumorais Cultivadas
18.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433567

RESUMO

The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.

19.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33547887

RESUMO

Transition from historic grasslands to woody plants in semiarid regions has led to questions about impacts on soil functioning, where microorganisms play a primary role. Understanding the relationship between microbes, plant diversity and soil functioning is relevant to assess such impacts. We evaluate the effect that plant type change in semiarid ecosystems has for microbial diversity and composition, and how this is related to carbon mineralization (CMIN) as a proxy for soil functioning. We followed a mesocosm experiment during 2 years within the Biosphere 2 facility in Oracle, AZ, USA. Two temperature regimes were established with two types of plants (grass or mesquite). Soil samples were analyzed for physicochemical and functional parameters, as well as microbial community composition using 16S rRNA amplicon metagenomics (Illumina MiSeq). Our results show the combined role of plant type and temperature regime in CMIN, where CMIN in grass has lower values at elevated temperatures compared with the opposite trend in mesquite. We also found a strong correlation of microbial composition with plant type but not with temperature regime. Overall, we provide evidence of the major effect of plant type in the specific composition of microbial communities as a potential result of the shrub encroachment.


Assuntos
Carbono/metabolismo , Ecossistema , Microbiota , Microbiologia do Solo , Carbono/análise , Plantas/classificação , Plantas/metabolismo , Plantas/microbiologia , Solo/química , Temperatura
20.
EMBO Mol Med ; 13(2): e10852, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314700

RESUMO

The tumor suppressor gene TP53 is the most frequently mutated gene in cancer. The compound APR-246 (PRIMA-1Met/Eprenetapopt) is converted to methylene quinuclidinone (MQ) that targets mutant p53 protein and perturbs cellular antioxidant balance. APR-246 is currently tested in a phase III clinical trial in myelodysplastic syndrome (MDS). By in vitro, ex vivo, and in vivo models, we show that combined treatment with APR-246 and inhibitors of efflux pump MRP1/ABCC1 results in synergistic tumor cell death, which is more pronounced in TP53 mutant cells. This is associated with altered cellular thiol status and increased intracellular glutathione-conjugated MQ (GS-MQ). Due to the reversibility of MQ conjugation, GS-MQ forms an intracellular drug reservoir that increases availability of MQ for targeting mutant p53. Our study shows that redox homeostasis is a critical determinant of the response to mutant p53-targeted cancer therapy.


Assuntos
Neoplasias , Preparações Farmacêuticas , Morte Celular , Linhagem Celular Tumoral , Humanos , Mutação , Neoplasias/tratamento farmacológico , Quinuclidinas , Compostos de Sulfidrila , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA