RESUMO
A new 3D-potential energy surface (3D-PES) for the weakly bound CH3Cl-He complex is mapped in Jacobi coordinates. Electronic structure calculations are performed using the explicitly correlated coupled clusters with single, double, and perturbative triple excitations approach in conjunction with the aug-cc-pVTZ basis set. Then, an analytical expansion of this 3D-PES is derived. This PES shows three minimal structures for collinear C-Cl-He arrangements and for He located in between two H atoms, in the plane parallel to the three H atoms, which is near the center of mass of CH3Cl. The latter form corresponds to the global minimum. Two maxima are also found, which connect the minimal structures. We then evaluated the pressure broadening coefficients of the spectral lines of CH3Cl in a helium bath based on our ab initio potential. Satisfactory agreement with experiments was observed, confirming the good accuracy of our 3D-PES. We also derived the bound rovibronic levels for ortho- and para-CH3Cl-He dimers after quantum treatment of the nuclear motions. For both clusters, computations show that although the ground vibrational state is located well above the intramolecular isomerization barriers, the rovibronic levels may be associated with a specific minimal structure. This can be explained by vibrational localization and vibrational memory effects.
RESUMO
Using an ab initio methodology and mass spectrometric study we identify AuO2+ as a metastable species in the gas phase. This represents the first characterization of a gas phase compound of gold with the oxidation state +4. Computations show that this dication exhibits deep potential wells with long lived electronic states. Its electronic ground state is of 4∑- symmetry, which is known for very few molecular ground states. We also discussed the O + Au2+ collision dynamics, which leads mostly to charge transfer to form Au+ and O+ species. This identification may help in identifying new routes for the reactivity of gold in the gas phase, in solution and in the condensed phase.
RESUMO
Isocyanogen, CNCN, was discovered very recently in the interstellar medium (ISM). At present, the rate coefficients for the rotational (de-)excitation of CNCN by collisions with He are determined. First, we mapped the interaction potential between CNCN and He in Jacobi coordinates using highly correlated ab initio methodology. Then, an analytical expansion of the CNCN-He potential energy surface is derived. Later on, quantum dynamical treatments of nuclear motions are performed using the close coupling technique. We obtained the cross sections for the rotational (de-)excitation of CNCN after a collision by He up to 2000 cm-1 total energies. These cross sections are used to deduce the collision rates in the 10-300 K range. These data are needed for modeling the CNCN abundances in the ISM. This work should help for determining the abundance of such non-symmetrical dicyanopolyynes in astrophysical media and indirectly the symmetric one [Cyanogen (NCCN)].
RESUMO
AIMS: A Bacillus amyloliquefaciens strain, designated 32a, was used to identify new compounds active against Agrobacterium tumefaciens and to evaluate their efficiency to control crown gall on carrot discs. METHODS AND RESULTS: Based on PCR-assays, four gene clusters were shown to direct the synthesis of the cyclic lipopeptides surfactin, iturin A, bacillomycin D and fengycin. Mass spectrometry analysis of culture supernatant led to the identification of these secondary metabolites, except bacillomycin, with heterogeneous mixture of homologues. Antimicrobial assays using lipopeptides-enriched extract showed a strong inhibitory activity against several bacterial and fungal strains, including Ag. tumefaciens. Biological control assays on carrot discs using both 32a spores and extract resulted in significant protection against crown gall disease, similar to that provided by the reference antagonistic strain Agrobacterium rhizogenes K1026. CONCLUSIONS: In contrast to all active compounds against Ag. tumefaciens that are of proteinaceous nature, this work enables for the first time to correlate the strong protective effect of B. amyloliquefaciens strain 32a towards crown gall disease with the production of a mixture of lipopeptides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings could be useful for growers and nursery men who are particularly interested in the biocontrol of the crown gall disease.
Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Bacillus/química , Lipopeptídeos/farmacologia , Agrobacterium tumefaciens/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bacillus/metabolismo , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Espectrometria de Massas , Dados de Sequência MolecularRESUMO
Time independent quantum mechanical (TIQM) scattering calculations have been carried out for the O((1)D) + CH4(X(1)A1) â CH3(X(2)A2â³) + OH(X(2)Π) atmospheric reaction, using an ab initio ground potential energy surface where the CH3 group is described as a pseudo-atom. Total and state-to-state reaction probabilities for a total angular momentum J = 0 have been determined for collision energies up to 0.5 eV. The vibrational and rotational state OH product distributions show no specific behavior. The rate coefficient has been calculated by means of the J-shifting approach in the 10-500 K temperature range and slightly depends on T at ordinary temperatures (as expected for a barrierless reaction). Quantum effects do not influence the vibrational populations and rate coefficient in an important way, and a rather good agreement has been found between the TIQM results and the quasiclassical trajectory and experimental ones. This reinforces somewhat the reliability of the pseudo-triatomic approach under the reaction conditions explored.
RESUMO
Using the recently developed explicitly correlated coupled cluster method in connection with the aug-cc-pVTZ basis set, we generated the three-dimensional potential energy surface (3D-PES) of the ground state of the Ar-BeO complex. This PES covers the regions of the global and local minima, the saddle point, and the dissociation of the complex. The PES is also used for the calculation of the rovibrational spectrum up to the dissociation limit. The high density of levels which is observed favors the mixing of the states and hence the occurrence of anharmonic resonances. The wavefunctions of the high rovibrational levels exhibit large amplitude motions in addition to strong anharmonic resonances. Our theoretical spectrum should be helpful in identifying the van der Waals modes of this complex in laboratory.
RESUMO
Through the study of the C3(X1Σg (+)) (1)Σg (+)) + He((1)S) astrophysical relevant system using standard (CCSD(T)) and explicitly correlated (CCSD(T)-F12) coupled cluster approaches, we show that the CCSD(T)-F12/aug-cc-pVTZ level represents a good compromise between accuracy and low computational cost for the generation of multi-dimensional potential energy surfaces (PESs) over both intra- and inter-monomer degrees of freedom. Indeed, the CCSD(T)-F12/aug-cc-pVTZ 2D-PES for linear C3 and the CCSD(T)-F12/aug-cc-pVTZ 4D-PES for bent C3 configurations gently approach those mapped at the CCSD(T)/aug-cc-pVXZ (X = T,Q) + bond functions level, whereas a strong reduction of computational effort is observed. After exact dynamical computations, the pattern of the rovibrational levels of the intermediate C3-He complex and the rotational and rovibrational (de-) excitation of C3 by He derived using both sets of PESs agree quite well. Since C3 shows a floppy character, the interaction PES is defined in four dimensions to obtain realistic collisional parameters. The C-C-C bending mode, which fundamental lies at 63 cm(-1) and can be excited at very low temperatures is explicitly considered as independent coordinate. Our work suggests hence that CCSD(T)-F12/aug-cc-pVTZ methodology is the key method for the generation of accurate polyatomic - He/H2 multi-dimensional PESs.
RESUMO
For the van der Waals C(2)(X (1)Sigma(g)(+))-H(2) molecular system, we generated a new ab initio potential energy surface (PES). We mapped this PES at the multireference internally contracted configuration-interaction method including the Davidson correction together with a large diffuse basis set. Then, we incorporated our PES into quantum scattering calculations at the close coupling and infinite order sudden approximation methods to cover collision energies ranging from 0.1 up to 4000 cm(-1). After Boltzmann thermal averaging, rate coefficients for temperatures of up to 1000 K are deduced. Discrepancies between our new rates and those computed previously are noticed. This should induce deviations in astrophysical modeling.
RESUMO
Ab initio transition dipole moments between states of the triplet manifold of NH radical are determined at the complete active space self-consistent field, followed by the internally contracted multireference singles plus doubles configuration interaction level of theory with a modified aug-cc-pVTZ basis set that accounts for valence-Rydberg interactions. This enables the computation of various radiative characteristics such as Einstein coefficients, radiative lifetimes, and oscillator strengths. These properties concern as well valence and Rydberg states. For the valence states, only the (0, 0) band of the A 3 Pi-X 3 Sigma(-) transition has received some important amount of attention. Data for the other transitions are rather scarce and sometimes inexistent. The results obtained in this work show good agreement with the available experimental data in comparison to other theoretical numbers reported in the literature.