Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 15: 6183-6200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922001

RESUMO

PURPOSE: Diethylaminoethyl-chitosan (DEAE-CH) is a derivative with excellent potential as a delivery vector for gene therapy applications. The aim of this study is to evaluate its toxicological profile for potential future clinical applications. METHODS: An endotoxin-free chitosan (CH) modified with DEAE, folic acid (FA) and polyethylene glycol (PEG) was used to complex small interfering RNA (siRNA) and form nanoparticles (DEAE12-CH-PEG-FA2/siRNA). Based on the guidelines from the International Organization for Standardization (ISO), the American Society for Testing and Materials (ASTM), and the Nanotechnology Characterization Laboratory (NCL), we evaluated the effects of the interaction between these nanoparticles and blood components. In vitro screening assays such as hemolysis, hemagglutination, complement activation, platelet aggregation, coagulation times, cytokine production, and reactive species, such as nitric oxide (NO) and reactive oxygen species (ROS), were performed on erythrocytes, plasma, platelets, peripheral blood mononuclear cells (PBMC) and Raw 264.7 macrophages. Moreover, MTS and LDH assays on Raw 264.7 macrophages, PBMC and MG-63 cells were performed. RESULTS: Our results show that a targeted theoretical plasma concentration (TPC) of DEAE12-CH-PEG-FA2/siRNA nanoparticles falls within the guidelines' thresholds: <1% hemolysis, 2.9% platelet aggregation, no complement activation, and no effect on coagulation times. ROS and NO production levels were comparable to controls. Cytokine secretion (TNF-α, IL-6, IL-4, and IL-10) was not affected by nanoparticles except for IL-1ß and IL-8. Nanoparticles showed a slight agglutination. Cell viability was >70% for TPC in all cell types, although LDH levels were statistically significant in Raw 264.7 macrophages and PBMC after 24 and 48 h of incubation. CONCLUSION: These DEAE12-CH-PEG-FA2/siRNA nanoparticles fulfill the existing ISO, ASTM and NCL guidelines' threshold criteria, and their low toxicity and blood biocompatibility warrant further investigation for potential clinical applications.


Assuntos
Quitosana/química , Terapia Genética , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácido Fólico/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Nanopartículas/administração & dosagem , Óxido Nítrico/metabolismo , Células RAW 264.7 , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
2.
Arthritis Res Ther ; 21(1): 72, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30867044

RESUMO

BACKGROUND: Resolvin D1 (RvD1), an important member of resolvins, exerts a wide spectrum of biological effects, including resolution of inflammation, tissue repair, and preservation of cell viability. The aim of the present study is to investigate the anti-arthritic potential and clarify the bone protective actions of RvD1 in vitro and in vivo. METHODS: RAW264.7 cells were treated with 50 ng/ml LPS for 72 h in the presence or absence of RvD1 (0-500 nM). Primary human monocytes were treated with M-CSF + RANKL for 14 days ± RvD1 (0-500 nM) with or without siRNA against RvD1 receptor FPR2. Expressions of inflammatory mediators, degrading enzymes, osteoclasts (OC) formation, and bone resorption were analyzed. The therapeutic effect of RvD1 (0-1000 ng) was carried out in murine collagen antibody-induced arthritis. Arthritis scoring, joint histology, and inflammatory and bone turnover markers were measured. RESULTS: RvD1 is not toxic and inhibits OC differentiation and activation. It decreases bone resorption, as assessed by the inhibition of TRAP and cathepsin K expression, hydroxyapatite matrix resorption, and bone loss. In addition, RvD1 reduces TNF-α, IL-1ß, IFN-γ, PGE2, and RANK and concurrently enhances IL-10 in OC. Moreover, in arthritic mice, RvD1 alleviates clinical score, paw inflammation, and bone and joint destructions. Besides, RvD1 reduces inflammatory mediators and markedly decreases serum markers of bone and cartilage turnover. CONCLUSION: Our results provide additional evidence that RvD1 plays a key role in preventing bone resorption and other pathophysiological changes associated with arthritis. The study highlights the clinical relevance of RvD1 as a potential compound for the treatment of inflammatory arthritis and related bone disorders.


Assuntos
Artrite Experimental/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos , Animais , Artrite Experimental/metabolismo , Artrite Experimental/fisiopatologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos DBA , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA