Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Hum Genet ; 106(2): 234-245, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31928709

RESUMO

Germline pathogenic variants in chromatin-modifying enzymes are a common cause of pediatric developmental disorders. These enzymes catalyze reactions that regulate epigenetic inheritance via histone post-translational modifications and DNA methylation. Cytosine methylation (5-methylcytosine [5mC]) of DNA is the quintessential epigenetic mark, yet no human Mendelian disorder of DNA demethylation has yet been delineated. Here, we describe in detail a Mendelian disorder caused by the disruption of DNA demethylation. TET3 is a methylcytosine dioxygenase that initiates DNA demethylation during early zygote formation, embryogenesis, and neuronal differentiation and is intolerant to haploinsufficiency in mice and humans. We identify and characterize 11 cases of human TET3 deficiency in eight families with the common phenotypic features of intellectual disability and/or global developmental delay; hypotonia; autistic traits; movement disorders; growth abnormalities; and facial dysmorphism. Mono-allelic frameshift and nonsense variants in TET3 occur throughout the coding region. Mono-allelic and bi-allelic missense variants localize to conserved residues; all but one such variant occur within the catalytic domain, and most display hypomorphic function in an assay of catalytic activity. TET3 deficiency and other Mendelian disorders of the epigenetic machinery show substantial phenotypic overlap, including features of intellectual disability and abnormal growth, underscoring shared disease mechanisms.


Assuntos
Desmetilação do DNA , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Dioxigenases/deficiência , Adulto , Sequência de Aminoácidos , Transtorno Autístico/genética , Transtorno Autístico/patologia , Criança , Pré-Escolar , Dioxigenases/química , Dioxigenases/genética , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transtornos do Crescimento/genética , Transtornos do Crescimento/patologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/patologia , Linhagem , Conformação Proteica , Homologia de Sequência , Adulto Jovem
2.
Mol Psychiatry ; 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450866

RESUMO

Postsynaptic scaffold proteins such as Shank, PSD-95, Homer and SAPAP/GKAP family members establish the postsynaptic density of glutamatergic synapses through a dense network of molecular interactions. Mutations in SHANK genes are associated with neurodevelopmental disorders including autism and intellectual disability. However, no SHANK missense mutations have been described which interfere with the key functions of Shank proteins believed to be central for synapse formation, such as GKAP binding via the PDZ domain, or Zn2+-dependent multimerization of the SAM domain. We identify two individuals with a neurodevelopmental disorder carrying de novo missense mutations in SHANK2. The p.G643R variant distorts the binding pocket for GKAP in the Shank2 PDZ domain and prevents interaction with Thr(-2) in the canonical PDZ ligand motif of GKAP. The p.L1800W variant severely delays the kinetics of Zn2+-dependent polymerization of the Shank2-SAM domain. Structural analysis shows that Trp1800 dislodges one histidine crucial for Zn2+ binding. The resulting conformational changes block the stacking of helical polymers of SAM domains into sheets through side-by-side contacts, which is a hallmark of Shank proteins, thereby disrupting the highly cooperative assembly process induced by Zn2+. Both variants reduce the postsynaptic targeting of Shank2 in primary cultured neurons and alter glutamatergic synaptic transmission. Super-resolution microscopy shows that both mutants interfere with the formation of postsynaptic nanoclusters. Our data indicate that both the PDZ- and the SAM-mediated interactions of Shank2 contribute to the compaction of postsynaptic protein complexes into nanoclusters, and that deficiencies in this process interfere with normal brain development in humans.

3.
Am J Med Genet A ; 188(10): 2988-2998, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35924478

RESUMO

Rett (RTT) syndrome, a neurodevelopmental disorder caused by pathogenic variation in the MECP2 gene, is characterized by developmental regression, loss of purposeful hand movements, stereotypic hand movements, abnormal gait, and loss of spoken language. Due to the X-linked inheritance pattern, RTT is typically limited to females. Recent studies revealed somatic mosaicism in MECP2 in male patients with RTT-like phenotypes. While detecting mosaic variation using Sanger sequencing is theoretically possible for mosaicism over ~15%-20%, several variables, including efficiency of PCR, background noise, and/or human error, contribute to a low detection rate using this technology. Mosaic variants in two males were detected by next generation sequencing (NGS; Case 1) and by Sanger re-sequencing (Case 2). Both had targeted digital PCR (dPCR) to confirm the variants. In this report, we present two males with classic RTT syndrome in whom we identified pathogenic variation in the MECP2 gene in the mosaic state (c.730C > T (p.Gln244*) in Patient 1 and c.397C > T (p.Arg133Cys) in Patient 2). In addition, estimates and measures of mosaic variant fraction were surprisingly similar between Sanger sequencing, NGS, and dPCR. The mosaic state of these variants contributed to a lengthy diagnostic odyssey for these patients. While NGS and even Sanger sequencing may be viable methods of detecting mosaic variation in DNA or RNA samples, applying targeted dPCR to supplement these sequencing technologies would provide confirmation of somatic mosaicism and mosaic fraction.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett , DNA , Feminino , Humanos , Masculino , Mosaicismo , Mutação , Fenótipo , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética
4.
Epilepsia ; 62(7): e103-e109, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34041744

RESUMO

CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.


Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia Generalizada/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Deficiências do Desenvolvimento/fisiopatologia , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/etiologia , Epilepsias Mioclônicas/genética , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/etiologia , Exoma/genética , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/etiologia , Deficiência Intelectual/genética , Masculino , Mutação/genética , Fenótipo , Estado Epiléptico/diagnóstico , Estado Epiléptico/etiologia , Estado Epiléptico/genética , Adulto Jovem
5.
J Med Genet ; 57(7): 461-465, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31924697

RESUMO

INTRODUCTION: Whole-exome sequencing (WES) has identified de novo variants in chromatin remodelling genes in patients with neurodevelopmental disorders (NDD). We report on a novel genetic discovery in chromatin remodelling in patients with NDD who also have corpus callosum (CC) anomalies. OBJECTIVE: To discover novel genes linked to both CC anomalies and NDD. METHODS: Clinical WES was performed for evaluation of NDD, identifying five patients with de novo variants in SUPT16H, a subunit of the FACT (facilitates chromatin transcription) complex. The clinical phenotypes, genetic results and brain MRIs were obtained and systematically reviewed. In silico protein function predictions were assessed and allele frequencies in control populations were compared. RESULTS: We identified four patients with de novo missense variants in SUPT16H and one patient with a de novo deletion including SUPT16H. These variants were not reported in the updated Genome Aggregation Database. When assayable, all protein products were predicted to be damaging. Symptoms included intellectual disability, autistic features, minor dysmorphic features and seizures. Anomalies of the CC were seen in all three patients with available brain imaging. CONCLUSION: Our findings implicate the gene SUPT16H in a novel disorder characterised by neurodevelopmental deficits and CC anomalies.


Assuntos
Agenesia do Corpo Caloso/genética , Proteínas de Ciclo Celular/genética , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Agenesia do Corpo Caloso/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Corpo Caloso/fisiopatologia , Exoma/genética , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Convulsões/genética , Convulsões/fisiopatologia , Sequenciamento do Exoma
6.
Brain ; 142(9): 2617-2630, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31327001

RESUMO

The underpinnings of mild to moderate neurodevelopmental delay remain elusive, often leading to late diagnosis and interventions. Here, we present data on exome and genome sequencing as well as array analysis of 13 individuals that point to pathogenic, heterozygous, mostly de novo variants in WDFY3 (significant de novo enrichment P = 0.003) as a monogenic cause of mild and non-specific neurodevelopmental delay. Nine variants were protein-truncating and four missense. Overlapping symptoms included neurodevelopmental delay, intellectual disability, macrocephaly, and psychiatric disorders (autism spectrum disorders/attention deficit hyperactivity disorder). One proband presented with an opposing phenotype of microcephaly and the only missense-variant located in the PH-domain of WDFY3. Findings of this case are supported by previously published data, demonstrating that pathogenic PH-domain variants can lead to microcephaly via canonical Wnt-pathway upregulation. In a separate study, we reported that the autophagy scaffolding protein WDFY3 is required for cerebral cortical size regulation in mice, by controlling proper division of neural progenitors. Here, we show that proliferating cortical neural progenitors of human embryonic brains highly express WDFY3, further supporting a role for this molecule in the regulation of prenatal neurogenesis. We present data on Wnt-pathway dysregulation in Wdfy3-haploinsufficient mice, which display macrocephaly and deficits in motor coordination and associative learning, recapitulating the human phenotype. Consequently, we propose that in humans WDFY3 loss-of-function variants lead to macrocephaly via downregulation of the Wnt pathway. In summary, we present WDFY3 as a novel gene linked to mild to moderate neurodevelopmental delay and intellectual disability and conclude that variants putatively causing haploinsufficiency lead to macrocephaly, while an opposing pathomechanism due to variants in the PH-domain of WDFY3 leads to microcephaly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Encéfalo/embriologia , Encéfalo/patologia , Variação Genética/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Animais , Proteínas Relacionadas à Autofagia/química , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Tamanho do Órgão , Estrutura Secundária de Proteína
7.
Dev Biol ; 371(1): 57-65, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22921921

RESUMO

Dorsal retinal fate is established early in eye development, via expression of spatially restricted dorsal-specific transcription factors in the optic vesicle; yet the events leading to initiation of dorsal fate are not clear. We hypothesized that induction of dorsal fate would require an extraocular signal arising from a neighboring tissue to pattern the prospective dorsal retina, however no such signal has been identified. We used the zebrafish embryo to determine the source, timing, and identity of the dorsal retina-inducing signal. Extensive cell movements occur during zebrafish optic vesicle morphogenesis, however the location of prospective dorsal cells within the early optic vesicle and their spatial relationship to early dorsal markers is currently unknown. Our mRNA expression and fate mapping analyses demonstrate that the dorsolateral optic vesicle is the earliest region to express dorsal specific markers, and cells from this domain contribute to the dorsal retinal pole at 24 hpf. We show that three bmp genes marking dorsal retina at 25 hpf are also expressed extraocularly before retinal patterning begins. We identified gdf6a as a dorsal initiation signal acting from the extraocular non-neural ectoderm during optic vesicle evagination. We find that bmp2b is involved in dorsal retina initiation, acting upstream of gdf6a. Together, this work has identified the nature and source of extraocular signals required to pattern the dorsal retina.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Ectoderma/fisiologia , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 6 de Diferenciação de Crescimento/metabolismo , Morfogênese/fisiologia , Retina/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Diferenciação Celular/fisiologia , Primers do DNA/genética , Ectoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Hibridização In Situ , Reação em Cadeia da Polimerase , Pirazóis , Pirimidinas , Retina/citologia , Peixe-Zebra/genética
8.
Eur J Med Genet ; 66(1): 104670, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36414205

RESUMO

BACKGROUND: Since the first description of a BRWD3-associated nonsydromic intellectual disability (ID) disorder in 2007, 21 additional families have been reported in the literature. METHODS: Using exome sequencing (ES) and international data sharing, we identified 14 additional unrelated individuals with pathogenic BRWD3 variants (12 males and 2 females, including one with skewed X-inactivation). We reviewed the 31 previously published cases in the literature with clinical data available, and describe the collective phenotypes of 43 males and 2 females, with 33 different BRWD3 variants. RESULTS: The most common features in males (excluding one patient with a mosaic variant) included ID (39/39 males), speech delay (24/25 males), postnatal macrocephaly (28/35 males) with prominent forehead (18/25 males) and large ears (14/26 males), and obesity (12/27 males). Both females presented with macrocephaly, speech delay, and epilepsy, while epilepsy was only observed in 4/41 males. Among the 28 variants with available segregation reported, 19 were inherited from unaffected mothers and 9 were de novo. CONCLUSION: This study demonstrates that the BRWD3-related phenotypes are largely non-specific, leading to difficulty in clinical recognition of this disorder. A genotype-first approach, however, allows for the more efficient diagnosis of the BRWD3-related nonsyndromic ID. The refined clinical features presented here may provide additional diagnostic assistance for reverse phenotyping efforts.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Megalencefalia , Masculino , Feminino , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Deficiência Intelectual/genética , Síndrome , Megalencefalia/genética , Fenótipo , Mutação , Fatores de Transcrição/genética
9.
Eur J Hum Genet ; 28(1): 76-87, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31395947

RESUMO

PTPN23 is a His-domain protein-tyrosine phosphatase implicated in ciliogenesis, the endosomal sorting complex required for transport (ESCRT) pathway, and RNA splicing. Until recently, no defined human phenotype had been associated with alterations in this gene. We identified and report a cohort of seven patients with either homozygous or compound heterozygous rare deleterious variants in PTPN23. Combined with four patients previously reported, a total of 11 patients with this disorder have now been identified. We expand the phenotypic and variation spectrum associated with defects in this gene. Patients have strong phenotypic overlap, suggesting a defined autosomal recessive syndrome caused by reduced function of PTPN23. Shared characteristics of affected individuals include developmental delay, brain abnormalities (mainly ventriculomegaly and/or brain atrophy), intellectual disability, spasticity, language disorder, microcephaly, optic atrophy, and seizures. We observe a broad range of variants across patients that are likely strongly reducing the expression or disrupting the function of the protein. However, we do not observe any patients with an allele combination predicted to result in complete loss of function of PTPN23, as this is likely incompatible with life, consistent with reported embryonic lethality in the mouse. None of the observed or reported variants are recurrent, although some have been identified in homozygosis in patients from consanguineous populations. This study expands the phenotypic and molecular spectrum of PTPN23 associated disease and identifies major shared features among patients affected with this disorder, while providing additional support to the important role of PTPN23 in human nervous and visual system development and function.


Assuntos
Encéfalo/anormalidades , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia
10.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268356

RESUMO

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Assuntos
Histonas , Doenças Neurodegenerativas , Animais , Fatores de Transcrição Forkhead/genética , Mutação em Linhagem Germinativa , Histonas/genética , Histonas/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Eur J Hum Genet ; 26(3): 420-427, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29358613

RESUMO

Neural tube defects (NTDs) remain one of the most serious birth defects, and although genes in several pathways have been implicated as risk factors for neural tube defects via knockout mouse models, very few molecular causes in humans have been identified. Whole exome sequencing identified deleterious variants in key apoptotic genes in two families with recurrent neural tube defects. Functional studies in fibroblasts indicate that these variants are loss-of-function, as apoptosis is significantly reduced. This is the first report of variants in apoptotic genes contributing to neural tube defect risk in humans.


Assuntos
Fator Apoptótico 1 Ativador de Proteases/genética , Caspase 9/genética , Defeitos do Tubo Neural/genética , Adulto , Apoptose , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Caspase 9/metabolismo , Células Cultivadas , Resistência a Medicamentos , Feminino , Morte Fetal , Fibroblastos/metabolismo , Fibroblastos/patologia , Ácido Fólico/administração & dosagem , Ácido Fólico/uso terapêutico , Humanos , Mutação com Perda de Função , Masculino , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/patologia , Gravidez
12.
Development ; 135(24): 4101-11, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19004855

RESUMO

Accurate retinotectal axon pathfinding depends upon the correct establishment of dorsal-ventral retinal polarity. We show that dorsal retinal gene expression is regulated by Wnt signaling in the dorsal retinal pigment epithelium (RPE). We find that a Wnt reporter transgene and Wnt pathway components are expressed in the dorsal RPE beginning at 14-16 hours post-fertilization. In the absence of Wnt signaling, tbx5 and Bmp genes initiate normal dorsal retinal expression but are not maintained. The expression of these genes is rescued by the downstream activation of Wnt signaling, and tbx5 is rescued by Bmp signaling. Furthermore, activation of Wnt signaling cannot rescue tbx5 in the absence of Bmp signaling, suggesting that Wnt signaling maintains dorsal retinal gene expression by regulating Bmp signaling. We present a model in which dorsal RPE-derived Wnt activity maintains the expression of Bmp ligands in the dorsal retina, thus coordinating the patterning of these two ocular tissues.


Assuntos
Retina/embriologia , Proteínas Wnt/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Modelos Biológicos , Epitélio Pigmentado da Retina/embriologia , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Proteínas Wnt/genética , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA