Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(43): 16348-16360, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856795

RESUMO

Volatile reactive nitrogen oxides (NOy) are significant atmospheric pollutants, including NOx (nitric oxide [NO] + nitrogen dioxide [NO2]) and NOz (nitrous acid [HONO] + nitric acid [HNO3] + nitrogen trioxide [NO3] + ...). NOy species are products of nitrogen (N) cycle processes, particularly nitrification and denitrification. Biogenic sources, including soil, account for over 50% of natural NOy emissions to the atmosphere, yet emissions from soils are generally not included in atmospheric models as a result of a lack of mechanistic data. This work is a unique investigation of NOy fluxes on a landscape scale, taking a comprehensive set of land-use types, human influence, and seasonality into account to determine large-scale heterogeneity to provide a basis for future modeling and hypothesis generation. By coupling 16S rRNA amplicon sequencing and quantitative polymerase chain reaction, we have linked significant differences in functional potential and activity of nitrifying and denitrifying soil microbes to NOy emissions from soils. Further, we have identified soils subject to increased N deposition that are less microbially active despite increased available N, potentially as a result of poor soil health from anthropogenic pollution. Structural equation modeling suggests human influence on soils to be a more significant effector of soil NOy emissions than land-use type.


Assuntos
Óxido Nítrico , Solo , Humanos , Óxido Nítrico/análise , Solo/química , RNA Ribossômico 16S , Óxidos de Nitrogênio/análise , Nitrificação , Nitrogênio/análise , Óxido Nitroso/análise
2.
Mycorrhiza ; 33(3): 139-152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165145

RESUMO

Current literature suggests ecological niche differentiation between co-occurring Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF) and Glomeromycotinian AMF (G-AMF), but experimental evidence is limited. We investigated the influence of soil age, water availability (wet and dry), and plant species (native Microlaena stipoides and exotic Trifolium subterraneum) on anatomical root colonisation and DNA profiles of M-AMF and G-AMF under glasshouse conditions. We grew seedlings of each species in soils collected from the four stages of a soil chronosequence, where pH decreases from the youngest to oldest stages, and phosphorus (P) is low in the youngest and oldest, but high in the intermediate stages. We scored the percentage of root length colonised and used DNA metabarcoding to profile fungal richness and community composition associated with treatment combinations. Soil age, water availability, and plant species were important influencers of root colonisation, although no M-AMF were visible following staining of M. stipoides roots. Soil age and host plant influenced fungal richness and community composition. However, response to soil age, potential host species, and water availability differed between M-AMF and G-AMF. Root colonisation of T. subterraneum by M-AMF and G-AMF was inversely correlated with soil P level. Community composition of M-AMF and G-AMF was structured by soil age and, to a lesser extent, plant species. Richness of M-AMF and G-AMF was negatively, and positively, correlated with available P, respectively. These findings are experimental evidence of ecological niche differentiation of M-AMF and G-AMF and invite further exploration into interactive effects of abiotic and biotic factors on their communities along successional trajectories.


Assuntos
Micorrizas , Micorrizas/fisiologia , Solo/química , Raízes de Plantas/microbiologia , Ecossistema , Água , Microbiologia do Solo , Fungos/fisiologia
3.
BMC Biol ; 20(1): 235, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266698

RESUMO

BACKGROUND: Recent studies demonstrated that microbiota inhabiting the plant rhizosphere exhibit diel changes in abundance. To investigate the impact of plant circadian rhythms on bacterial and fungal rhythms in the rhizosphere, we analysed temporal changes in fungal and bacterial communities in the rhizosphere of Arabidopsis plants overexpressing or lacking function of the circadian clock gene LATE ELONGATED HYPOCOTYL (LHY). RESULTS: Under diel light-dark cycles, the knock-out mutant lhy-11 and the gain-of-function mutant lhy-ox both exhibited gene expression rhythms with altered timing and amplitude compared to wild-type plants. Distinct sets of bacteria and fungi were found to display rhythmic changes in abundance in the rhizosphere of both of these mutants, suggesting that abnormal patterns of rhythmicity in the plant host caused temporal reprogramming of the rhizosphere microbiome. This was associated with changes in microbial community structure, including changes in the abundance of fungal guilds known to impact on plant health. Under constant environmental conditions, microbial rhythmicity persisted in the rhizosphere of wild-type plants, indicating control by a circadian oscillator. In contrast, loss of rhythmicity in lhy-ox plants was associated with disrupted rhythms for the majority of rhizosphere microbiota. CONCLUSIONS: These results show that aberrant function of the plant circadian clock is associated with altered rhythmicity of rhizosphere bacteria and fungi. In the long term, this leads to changes in composition of the rhizosphere microbiome, with potential consequences for plant health. Further research will be required to understand the functional implications of these changes and how they impact on plant health and productivity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Proteínas de Arabidopsis/genética , Ritmo Circadiano/genética , Rizosfera , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a DNA/genética , Arabidopsis/genética , Arabidopsis/metabolismo
4.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904784

RESUMO

This article outlines the design and implementation of an internet-of-things (IoT) platform for the monitoring of soil carbon dioxide (CO2) concentrations. As atmospheric CO2 continues to rise, accurate accounting of major carbon sources, such as soil, is essential to inform land management and government policy. Thus, a batch of IoT-connected CO2 sensor probes were developed for soil measurement. These sensors were designed to capture spatial distribution of CO2 concentrations across a site and communicate to a central gateway using LoRa. CO2 concentration and other environmental parameters, including temperature, humidity and volatile organic compound concentration, were logged locally and communicated to the user through a mobile (GSM) connection to a hosted website. Following three field deployments in summer and autumn, we observed clear depth and diurnal variation of soil CO2 concentration within woodland systems. We determined that the unit had the capacity to log data continuously for a maximum of 14 days. These low-cost systems have great potential for better accounting of soil CO2 sources over temporal and spatial gradients and possibly flux estimations. Future testing will focus on divergent landscapes and soil conditions.

5.
Environ Microbiol ; 24(4): 1902-1917, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35229442

RESUMO

Bacteria possess various regulatory mechanisms to detect and coordinate a response to elemental nutrient limitation. In pseudomonads, the two-component system regulators CbrAB, NtrBC and PhoBR, are responsible for regulating cellular response to carbon (C), nitrogen (N) and phosphorus (P) respectively. Phosphonates are reduced organophosphorus compounds produced by a broad range of biota and typified by a direct C-P bond. Numerous pseudomonads can use the environmentally abundant phosphonate species 2-aminoethylphosphonate (2AEP) as a source of C, N, or P, but only PhoBR has been shown to play a role in 2AEP utilization. On the other hand, utilization of 2AEP as a C and N source is considered substrate inducible. Here, using the plant-growth-promoting rhizobacterium Pseudomonas putida BIRD-1 we present evidence that 2AEP utilization is under dual regulation and only occurs upon depletion of C, N, or P, controlled by CbrAB, NtrBC, or PhoBR respectively. However, the presence of 2AEP was necessary for full gene expression, i.e. expression was substrate inducible. Mutation of a LysR-type regulator, termed AepR, upstream of the 2AEP transaminase-phosphonatase system (PhnWX), confirmed this dual regulatory mechanism. To our knowledge, this is the first study identifying coordination between global stress response and substrate-specific regulators in phosphonate metabolism.


Assuntos
Organofosfonatos , Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Organofosfonatos/metabolismo , Fósforo/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
6.
New Phytol ; 233(3): 1369-1382, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34618929

RESUMO

Globally, agricultural land-use negatively affects soil biota that contribute to ecosystem functions such as nutrient cycling, yet arbuscular mycorrhizal fungi (AMF) are promoted as essential components of agroecosystems. Arbuscular mycorrhizal fungi include Glomeromycotinian AMF (G-AMF) and the arbuscule-producing fine root endophytes, recently re-classified into the Endogonales order within Mucoromycotina. The correct classification of Mucoromycotinian AMF (M-AMF) and the availability of new molecular tools can guide research to better the understanding of their diversity and ecology. To investigate the impact on G-AMF and M-AMF of agricultural land-use at a continental scale, we sampled DNA from paired farm and native sites across 10 Australian biomes. Glomeromycotinian AMF were present in both native and farm sites in all biomes. Putative M-AMF were favoured by farm sites, rare or absent in native sites, and almost entirely absent in tropical biomes. Temperature, rainfall, and soil pH were strong drivers of richness and community composition of both groups, and plant richness was an important mediator. Both fungal groups occupy different, but overlapping, ecological niches, with M-AMF thriving in temperate agricultural landscapes. Our findings invite exploration of the origin and spread of M-AMF and continued efforts to resolve the phylogeny of this newly reclassified group of AMF.


Assuntos
Micorrizas , Agricultura , Austrália , Ecossistema , Fungos , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo
7.
Plant Cell Physiol ; 62(2): 248-261, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33475132

RESUMO

The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.


Assuntos
Arabidopsis/metabolismo , Microbiota , Raízes de Plantas/metabolismo , Rizosfera , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais/fisiologia
8.
Environ Microbiol ; 23(10): 6309-6327, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523801

RESUMO

Carbon monoxide (CO) is both a ubiquitous atmospheric trace gas and an air pollutant. While aerobic CO-degrading microorganisms in soils and oceans are estimated to remove ~370 Tg of CO per year, the presence of CO-degrading microorganisms in above-ground habitats, such as the phyllosphere, and their potential role in CO cycling remains unknown. CO-degradation by leaf washes of two common British trees, Ilex aquifolium and Crataegus monogyna, demonstrated CO uptake in all samples investigated. Based on the analyses of taxonomic and functional genes, diverse communities of candidate CO-oxidizing taxa were identified, including members of Rhizobiales and Burkholderiales which were abundant in the phyllosphere at the time of sampling. Based on predicted genomes of phyllosphere community members, an estimated 21% of phyllosphere bacteria contained CoxL, the large subunit of CO-dehydrogenase. In support of this, data mining of publicly available phyllosphere metagenomes for genes encoding CO-dehydrogenase subunits demonstrated that, on average, 25% of phyllosphere bacteria contained CO-dehydrogenase gene homologues. A CO-oxidizing Phyllobacteriaceae strain was also isolated from phyllosphere samples which contains genes encoding both CO-dehydrogenase as well as a ribulose-1,5-bisphosphate carboxylase-oxygenase. These results suggest that the phyllosphere supports diverse and potentially abundant CO-oxidizing bacteria, which are a potential sink for atmospheric CO.


Assuntos
Bactérias , Árvores , Ecossistema , Oxirredução , Filogenia , Árvores/microbiologia
9.
Microb Ecol ; 81(4): 864-873, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33145650

RESUMO

Fine root endophytes (FRE) were traditionally considered a morphotype of arbuscular mycorrhizal fungi (AMF), but recent genetic studies demonstrate that FRE belong within the subphylum Mucoromycotina, rather than in the subphylum Glomeromycotina with the AMF. These findings prompt enquiry into the fundamental ecology of FRE and AMF. We sampled FRE and AMF in roots of Trifolium subterraneum from 58 sites across temperate southern Australia. We investigated the environmental drivers of composition, richness, and root colonization of FRE and AMF by using structural equation modelling and canonical correspondence analyses. Root colonization by FRE increased with increasing temperature and rainfall but decreased with increasing phosphorus (P). Root colonization by AMF increased with increasing soil organic carbon but decreased with increasing P. Richness of FRE decreased with increasing temperature and soil pH. Richness of AMF increased with increasing temperature and rainfall but decreased with increasing soil aluminium (Al) and pH. Aluminium, soil pH, and rainfall were, in decreasing order, the strongest drivers of community composition of FRE; they were also important drivers of community composition of AMF, along with temperature, in decreasing order: rainfall, Al, temperature, and soil pH. Thus, FRE and AMF showed the same responses to some (e.g. soil P, soil pH) and different responses to other (e.g. temperature) key environmental factors. Overall, our data are evidence for niche differentiation among these co-occurring mycorrhizal associates.


Assuntos
Micorrizas , Carbono , Endófitos/genética , Fungos , Raízes de Plantas , Solo , Microbiologia do Solo
10.
Proc Natl Acad Sci U S A ; 115(39): E9145-E9152, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201727

RESUMO

Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear. Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced. The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue. Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms. Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation.


Assuntos
Arabidopsis/metabolismo , Epigênese Genética/fisiologia , Técnicas de Embriogênese Somática de Plantas , Reprodução Assexuada/fisiologia , Arabidopsis/citologia , Arabidopsis/genética
11.
Ecol Appl ; 29(6): e01946, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31173423

RESUMO

There are increasing calls to provide greenspace in urban areas, yet the ecological quality, as well as quantity, of greenspace is important. Short mown grassland designed for recreational use is the dominant form of urban greenspace in temperate regions but requires considerable maintenance and typically provides limited habitat value for most taxa. Alternatives are increasingly proposed, but the biodiversity potential of these is not well understood. In a replicated experiment across six public urban greenspaces, we used nine different perennial meadow plantings to quantify the relative roles of floristic diversity and height of sown meadows on the richness and composition of three taxonomic groups: plants, invertebrates, and soil microbes. We found that all meadow treatments were colonized by plant species not sown in the plots, suggesting that establishing sown meadows does not preclude further locally determined grassland development if management is appropriate. Colonizing species were rarer in taller and more diverse plots, indicating competition may limit invasion rates. Urban meadow treatments contained invertebrate and microbial communities that differed from mown grassland. Invertebrate taxa responded to changes in both height and richness of meadow vegetation, but most orders were more abundant where vegetation height was longer than mown grassland. Order richness also increased in longer vegetation and Coleoptera family richness increased with plant diversity in summer. Microbial community composition seems sensitive to plant species composition at the soil surface (0-10 cm), but in deeper soils (11-20 cm) community variation was most responsive to plant height, with bacteria and fungi responding differently. In addition to improving local residents' site satisfaction, native perennial meadow plantings can produce biologically diverse grasslands that support richer and more abundant invertebrate communities, and restructured plant, invertebrate, and soil microbial communities compared with short mown grassland. Our results suggest that diversification of urban greenspace by planting urban meadows in place of some mown amenity grassland is likely to generate substantial biodiversity benefits, with a mosaic of meadow types likely to maximize such benefits.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Plantas , Solo
12.
New Phytol ; 220(4): 1172-1184, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29350759

RESUMO

Global warming is resulting in increased frequency of weather extremes. Root-associated fungi play important roles in terrestrial biogeochemical cycling processes, but the way in which they are affected by extreme weather is unclear. Here, we performed long-term field monitoring of the root-associated fungus community of a short rotation coppice willow plantation, and compared community dynamics before and after a once in 100 yr rainfall event that occurred in the UK in 2012. Monitoring of the root-associated fungi was performed over a 3-yr period by metabarcoding the fungal internal transcribed spacer (ITS) region. Repeated soil testing and continuous climatic monitoring supplemented community data, and the relative effects of environmental and temporal variation were determined on the root-associated fungal community. Soil saturation and surface water were recorded throughout the early growing season of 2012, following extreme rainfall. This was associated with a crash in the richness and relative abundance of ectomycorrhizal fungi, with each declining by over 50%. Richness and relative abundance of saprophytes and pathogens increased. We conclude that extreme rainfall events may be important yet overlooked determinants of root-associated fungal community assembly. Given the integral role of ectomycorrhizal fungi in biogeochemical cycles, these events may have considerable impacts upon the functioning of terrestrial ecosystems.


Assuntos
Fungos/fisiologia , Micobioma , Raízes de Plantas/microbiologia , Chuva , Clima , Fungos/classificação , Geografia , Filogenia , Fatores de Tempo
13.
Environ Microbiol ; 18(10): 3535-3549, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27233093

RESUMO

Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial-driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD-1 (BIRD-1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole-cell proteomic analysis of BIRD-1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well-characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD-1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO-dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P.


Assuntos
Fósforo/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Pseudomonas stutzeri/genética , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Genômica , Fosfatos/metabolismo , Proteômica , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo , Pseudomonas stutzeri/metabolismo , Regulon , Rizosfera
14.
Mycorrhiza ; 26(1): 77-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26100128

RESUMO

Arbuscular mycorrhizal (AM) fungi provide benefits to host plants and show functional diversity, with evidence of functional trait conservation at the family level. Diverse communities of AM fungi ought therefore to provide increased benefits to the host, with implications for the management of sustainable agroecosystems. However, this is often not evident in the literature, with diversity saturation at low species number. Growth and nutrient uptake were measured in onions in the glasshouse on AM-free phosphorus (P)-poor soil, inoculated with between one and seven species of AM fungi in all possible combinations. Inoculation with AM fungi increased shoot dry weight as well as P and copper concentrations in shoots but reduced the concentration of potassium and sulphur. There was little evidence of increased benefit from high AM fungal diversity, and increasing diversity beyond three species did not result in significantly higher shoot weight or P or Cu concentrations. Species of Glomeraceae had the greatest impact on growth and nutrient uptake, while species of Acaulospora and Racocetra did not have a significant impact. Failure to show a benefit from high AM fungal diversity in this and other studies may be the result of experimental conditions, with the benefits of AM fungal diversity only becoming apparent when the host plant is faced with multiple stress factors. Replicating the complex interactions between AM fungi, the host plant and their environment in the laboratory in order to fully understand these interactions is a major challenge to AM research.


Assuntos
Agricultura/métodos , Produtos Agrícolas/microbiologia , Ecossistema , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Cebolas/microbiologia , Biodiversidade , Cobre/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Inglaterra , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/metabolismo , Micorrizas/classificação , Cebolas/crescimento & desenvolvimento , Cebolas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Potássio/metabolismo , Solo/química , Microbiologia do Solo
15.
Appl Environ Microbiol ; 81(19): 6890-900, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26209677

RESUMO

Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations.


Assuntos
Nitrofenóis/metabolismo , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rios/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Dados de Sequência Molecular , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S/genética
16.
Mycorrhiza ; 24(1): 1-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23715868

RESUMO

Understanding of the ecology of arbuscular mycorrhizal fungi comes primarily from the order Glomerales, and relatively little is known of the ecology of other orders including the Paraglomerales. We investigated the distribution of the Paraglomerales across the English agricultural landscape under different management systems. Soils were collected from 11 tilled agricultural sites. Presence of Paraglomerales was assessed using PCR amplification of 18S/ITS region ribosomal DNA isolated from trap plants, terminal restriction fragment length polymorphism and cloning. Paraglomus spp. were detected in all samples from one location and sporadically in six more, but not at the other locations. Distribution was not related to soil physiochemical characteristics, but the Paraglomaceae were significantly more common in soils under organic management. Cloning of samples from three sites produced sequences closely related to Paraglomus laccatum but only distantly related to Paraglomus brasilianum and Paraglomus occultum. Individual sites had between 10 and 27 separate terminal restriction fragments (T-RFs). The large number of T-RFs reflected a significant sequence diversity in the ITS region. Paraglomerales were, therefore, widely distributed across the agricultural landscape, though with patchy distribution and low diversity. More intensive agricultural management appeared to impact negatively on Paraglomus spp.


Assuntos
Agricultura , Biodiversidade , Glomeromycota/classificação , Glomeromycota/fisiologia , Microbiologia do Solo , DNA Espaçador Ribossômico/genética , Inglaterra , Glomeromycota/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 18S/genética , Solo/química
17.
J Hazard Mater ; 466: 133440, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246058

RESUMO

An experimental study was conducted on how polymer density affects the transport and fate of microplastics in aquatic flows. For the first time, polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), and polyvinyl chloride (PVC) were chemically stained and tested using solute transport techniques and velocities found among rivers in the natural environment (0.016 - 0.361 m/s). The movement of 3D-polymers with densities ranging from 0.9 - 1.4 g/cm³ was quantified in a laboratory flume scaled to simulate open-channel flows in fluvial systems. Except for PP, in most conditions microplastics exhibited similar transport characteristics to solutes regardless of density and established solute transport models were successfully implemented to predict their transport and fate. Mass recoveries and ADE routing model demonstrated microplastic deposition and resuspension was associated with polymer density below critical velocity thresholds ≤ 0.1 m/s. When density becomes the dominant force at these slower velocities, concentrations of denser than water microplastics will be momentarily or permanently deposited in channel beds and microplastics follow the classical Shields sediment transport methodology. This data is the first to provide microplastic suspension and deposition thresholds based on river velocity and polymer density, making a key contribution to research predicting microplastic fate and organismal exposure.

18.
Sci Total Environ ; 912: 168907, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061652

RESUMO

Fine root endophytes, recently reclassified as Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF), are now recognized as functionally important as Glomeromycotinian AMF (G-AMF). However, little is known about the biogeography and ecology of M-AMF and G-AMF communities, particularly on a large scale, preventing a systematic assessment of ecosystem diversity and functioning. Here, we investigated the biogeographic assemblies and ecological diversity patterns of both G-AMF and M-AMF, using published 18S rDNA amplicon datasets and associated metadata from 575 soil samples in six ecosystems across China. Contrasting with G-AMF, putative M-AMF were rare in natural/semi-natural sites, where their communities were a subset of those in agricultural sites characterized by intensive disturbances, suggesting different ecological niches that they could occupy. Spatial and environmental factors (e.g., vegetation type) significantly influenced both fungal communities, with soil total­nitrogen and mean-annual-precipitation being the strongest predictors for G-AMF and M-AMF richness, respectively. Both groups exhibited a strong spatial distance-decay relationship, shaped more by environmental filtering than spatial effects for M-AMF, and the opposite for G-AMF, presumably because stochasticity (e.g., drift) dominantly structured G-AMF communities; while the narrower niche breadth (at community-level) of M-AMF compared to G-AMF suggested its more susceptibility to environmental differences. Furthermore, co-occurrence network links between G-AMF and M-AMF were prevalent across ecosystems, and were predicted to play a key role in stabilizing overall communities harboring both fungi. Based on the macroecological spatial scale datasets, this study provides solid evidence that the two AMF groups have distinct ecological preferences at the continental scale in China, and also highlights the potential impacts of anthropogenic activities on distributions of AMF. These results advance our knowledge of the ecological differences between the two fungal groups in terrestrial ecosystems, suggesting the need for further field-based investigation that may lead to a more sophisticated understanding of ecosystem function and sustainable management.


Assuntos
Micorrizas , Ecossistema , Microbiologia do Solo , Solo , China , Fungos , Raízes de Plantas/microbiologia
19.
New Phytol ; 198(2): 546-556, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23421495

RESUMO

High soil phosphorus (P) concentration is frequently shown to reduce root colonization by arbuscular mycorrhizal (AM) fungi, but the influence of P on the diversity of colonizing AM fungi is uncertain. We used terminal restriction fragment length polymorphism (T-RFLP) of 18S rDNA and cloning to assess diversity of AM fungi colonizing maize (Zea mays), soybean (Glycene max) and field violet (Viola arvensis) at three time points in one season along a P gradient of 10-280 mg l(-1) in the field. Percentage AM colonization changed between sampling time points but was not reduced by high soil P except in maize. There was no significant difference in AM diversity between sampling time points. Diversity was reduced at concentrations of P > 25 mg l(-1), particularly in maize and soybean. Both cloning and T-RFLP indicated differences between AM communities in the different host species. Host species was more important than soil P in determining the AM community, except at the highest P concentration. Our results show that the impact of soil P on the diversity of AM fungi colonizing plants was broadly similar, despite the fact that different plants contained different communities. However, subtle differences in the response of the AM community in each host were evident.


Assuntos
Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Fósforo/farmacologia , Plantas/efeitos dos fármacos , Plantas/microbiologia , Solo/química , Análise por Conglomerados , Contagem de Colônia Microbiana , Enzimas de Restrição do DNA/metabolismo , Micorrizas/crescimento & desenvolvimento , Glycine max/microbiologia , Fatores de Tempo , Viola/microbiologia , Zea mays/microbiologia
20.
Environ Sci Technol ; 47(15): 8229-37, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23819841

RESUMO

Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism.


Assuntos
Produtos Agrícolas , Luz , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA