Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(13): e2308104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37955918

RESUMO

Next-generation medical and consumer electrical devices require soft, flexible materials. Piezoelectric materials, capable of converting mechanical stress into electrical energy, are of interest across various fields. Chiral nanostructures, with inherent chirality, have emerged as potential piezoelectric materials. Peptide-based materials, known for self-assembly and stimuli responsiveness, hold promise for the utilization of chiral nanostructures. When combined with luminescent chromophores, peptides can generate aggregation-induced chiroptical effects like Circularly Polarized Luminescence (CPL) and Circular Dichroism (CD). In this study, a chiral organogel, L,L-1 is synthesized, and its self-assembly, mechanical properties, and chiroptical features are examined. The organogel exhibits thermo-reversible and thixotropic behavior, forming fibrillar networks and 2D-sheets upon cooling. CD spectroscopy reveals aggregation-induced chirality on pyrene chromophore, resulting in CPL with glum values of 3.0 (± 0.2) × 10-3 and 3.1 (± 0.2) × 10-3 for L,L-1 and D,D-1, respectively. Notably, the 2D-sheets exhibit an enhanced piezoelectric response (d33 ≈76.0 pm V-1) compared to the fibrillar network (d33 ≈64.1 pm V-1). Introducing an electron-deficient molecule into the solution forms a Charge-transfer (CT) complex, modulating the piezoelectric response to d33 ≈52.44 pm V-1. This study offers a promising approach to optoelectronics design, presenting a chiral system with both CPL and piezoelectric responses, opening new possibilities for innovative applications.

2.
Chem Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39144467

RESUMO

Circularly polarized luminescence (CPL) is gaining interest across various disciplines, including materials science, pharmaceuticals, and sensing technologies. Organic molecules, due to their ease of synthesis and reduced toxicity, are a focus for achieving high dissymmetry values (g lum) in CPL. Here, we present a low molecular weight molecule (1), a dipeptide (Ala-Phe) covalently linked with tetraphenyl-ethylene (TPE), an Aggregation-Induced Emission luminophore (AIE-gen). Varying the stereochemistry of amino acid chiral centers, we synthesized homochiral 1-(l, l) & 1-(d, d) and heterochiral 1-(l, d) and 1-(d, l). In aqueous media, these molecules exhibit aggregation-induced chirality at the TPE chromophore. Heterochiral systems form sheet-like structures, displaying a bisignate induced circular dichroism signal and a good g lum value for CPL [7.5 (±0.04) × 10-3]. Conversely, homochiral systems adopt fibrillar morphology, exhibiting a monosignate induced circular dichroism signal with a lower dissymmetry value for CPL [1.3 (±0.05) × 10-3]. This study introduces the concept of chiroptical amplification, emphasizing enhanced CPL through heterochiral peptide-induced CPL compared to its homochiral counterpart, with an ON and OFF CPL signal at low and high temperature respectively.

3.
ACS Appl Mater Interfaces ; 16(35): 45871-45887, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39163516

RESUMO

The long noncoding RNAs (lncRNA) are primarily associated with several essential gene regulations but are also connected to cancer metabolism and progression. HOTAIR and MALAT1 are two such lncRNAs that are detected in malignancies of various origins and are responsible for the poor prognosis of cancer patients. Due to these factors, the lncRNAs have emerged as prime targets for the development of anticancer therapeutics. However, nonviral delivery of lncRNA-targeted antisense oligonucleotides (ASOs) still remains a critical challenge while maintaining their structural and functional integrity. Herein, we have designed and synthesized a new series of ionizable lipids with variations in their head groups to prepare lipid nanoparticle (LNP) formulation along with cholesterol-based twin cationic lipid and amphiphilic zwitterionic lipid. The context responsiveness of these formulations in delivering the ASOs has been thoroughly investigated by various bioanalytical techniques, and an optimum formulation has been identified. The LNPs are utilized to deliver the ASOs targeting HOTAIR lncRNA in human cancer cell lines and MALAT1 lncRNA in mouse models. This study thus standardizes an advanced nanomaterial system for nonviral gene delivery that has been validated by a considerable reduction in the target lncRNA level under in vitro and a significant reduction in tumor volume under in vivo settings.


Assuntos
Neoplasias da Mama , Lipídeos , Nanopartículas , Oligonucleotídeos Antissenso , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Nanopartículas/química , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Animais , Camundongos , Feminino , Lipídeos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Camundongos Nus
4.
Nanoscale ; 16(27): 13050-13060, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38899974

RESUMO

Supramolecular hydrogels serve as an excellent platform to enable in situ reactive oxygen species (ROS) generation while maintaining controlled localized conditions, thereby mitigating cytotoxicity. Herein, we demonstrate hydrogel formation using guanosine-5'-monophosphate (GMP) with tetra(4-carboxylphenyl) ethylene (1) to exhibit aggregation-induced emission (AIE) and tunable mechanical strength in the presence of divalent metal ions such as Ca2+, Mg2+, and Fe2+. The addition of divalent metal ions leads to structural transformation in the metallogels (M-1GMP). Furthermore, the incorporation of Fe2+ ions into the hydrogel (Fe-1GMP) promotes the Fenton reaction that could be upregulated upon adding ascorbic acid (AA), demonstrating antibacterial efficacy via ROS generation. In vitro studies on AA-loaded Fe-1GMP demonstrate excellent bacterial killing efficacy against E. coli, S. aureus and vancomycin-resistant enterococci (VRE) strains. Finally, in vivo studies involving topical administration of Fe-1GMP to Balb/c mice with skin infections further suggest the potential antibacterial efficacy of the hydrogel. Taken together, the hydrogel with its unique combination of mechanical tunability, ROS generation capability and antibacterial efficacy can be used for biomedical applications, particularly in wound healing and infection control.


Assuntos
Antibacterianos , Escherichia coli , Hidrogéis , Ferro , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Staphylococcus aureus/efeitos dos fármacos , Camundongos , Escherichia coli/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ferro/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Testes de Sensibilidade Microbiana , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Ácido Ascórbico/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA