Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Dairy Sci ; 100(8): 6053-6073, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28624283

RESUMO

The purpose of this study was to investigate the effects of pasture-based versus indoor total mixed ration (TMR) feeding systems on the chemical composition, quality characteristics, and sensory properties of full-fat Cheddar cheeses. Fifty-four multiparous and primiparous Friesian cows were divided into 3 groups (n = 18) for an entire lactation. Group 1 was housed indoors and fed a TMR diet of grass silage, maize silage, and concentrates; group 2 was maintained outdoors on perennial ryegrass only pasture (GRS); and group 3 was maintained outdoors on perennial ryegrass/white clover pasture (CLV). Full-fat Cheddar cheeses were manufactured in triplicate at pilot scale from each feeding system in September 2015 and were examined over a 270-d ripening period at 8°C. Pasture-derived feeding systems were shown to produce Cheddar cheeses yellower in color than that of TMR, which was positively correlated with increased cheese ß-carotene content. Feeding system had a significant effect on the fatty acid composition of the cheeses. The nutritional composition of Cheddar cheese was improved through pasture-based feeding systems, with significantly lower thrombogenicity index scores and a greater than 2-fold increase in the concentration of vaccenic acid and the bioactive conjugated linoleic acid C18:2 cis-9,trans-11, whereas TMR-derived cheeses had significantly higher palmitic acid content. Fatty acid profiling of cheeses coupled with multivariate analysis showed clear separation of Cheddar cheeses derived from pasture-based diets (GRS or CLV) from that of a TMR system. Such alterations in the fatty acid profile resulted in pasture-derived cheeses having reduced hardness scores at room temperature. Feeding system and ripening time had a significant effect on the volatile profile of the Cheddar cheeses. Pasture-derived Cheddar cheeses had significantly higher concentrations of the hydrocarbon toluene, whereas TMR-derived cheese had significantly higher concentration of 2,3-butanediol. Ripening period resulted in significant alterations to cheese volatile profiles, with increases in acid-, alcohol-, aldehyde-, ester-, and terpene-based volatile compounds. This study has demonstrated the benefits of pasture-derived feeding systems for production of Cheddar cheeses with enhanced nutritional and rheological quality compared with a TMR feeding system.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Queijo/análise , Leite/química , Animais , Butileno Glicóis , Bovinos , Dieta/veterinária , Feminino , Poaceae , Paladar
2.
J Dairy Sci ; 96(8): 4928-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23746589

RESUMO

The microbial composition of raw and pasteurized milk is assessed on a daily basis. However, many such tests are culture-dependent, and, thus, bacteria that are present at subdominant levels, or that cannot be easily grown in the laboratory, may be overlooked. To address this potential bias, we have used several culture-independent techniques, including flow cytometry, real-time quantitative PCR, and high-throughput DNA sequencing, to assess the microbial population of milk from a selection of commercial milk producers, pre- and postpasteurization. The combination of techniques employed reveals the presence of a previously unrecognized and diverse bacterial population in unpasteurized cow milk. Most notably, the use of high-throughput DNA sequencing resulted in several bacterial genera being identified in milk samples for the first time. These included Bacteroides, Faecalibacterium, Prevotella, and Catenibacterium. Our culture-independent analyses also indicate that the bacterial population of pasteurized milk is more diverse than previously appreciated, and that nonthermoduric bacteria within these populations are likely to be in a damaged, nonculturable form. It is thus apparent that the application of state-of-the-art approaches can provide a detailed insight into the bacterial composition of milk and could potentially be employed in the future to investigate the factors that influence the composition of these populations.


Assuntos
Leite/microbiologia , Pasteurização/normas , Animais , Bovinos , Citometria de Fluxo/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leite/química , Reação em Cadeia da Polimerase em Tempo Real/métodos
3.
Foods ; 12(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444302

RESUMO

In recent years, chlorate has become a residue of concern internationally, due to the risk that it poses to thyroid gland function. However, little is known about its occurrence in dairy products of Irish origin. To address this, a study was conducted in which samples of milk (n = 317), cream (n = 199), butter (n = 178), cheese (n = 144) and yoghurt (n = 440) were collected from grocery stores in the Republic of Ireland. Sampling was conducted across spring, summer, autumn and winter of 2021. Samples from multiple manufacturers of each respective dairy product were procured and analysed for chlorate using UPLC-MS/MS. Chlorate was detected in milk, cream, natural, blueberry, strawberry and raspberry yoghurts. Mean chlorate levels detected in these products were 0.0088, 0.0057, 0.055, 0.067, 0.077 and 0.095 mg kg-1, respectively. Chlorate was undetected in butter and cheese (<0.01 mg kg-1). All products sampled, except yoghurt, were found to be compliant with the EU limit for chlorate in milk (0.10 mg kg-1). Some manufacturers produced product with greater incidence and levels of chlorate. Chlorate levels from samples tested at different times of the year did not differ significantly, with the exception of strawberry and raspberry yoghurts which had higher chlorate levels in the winter period.

4.
Appl Environ Microbiol ; 78(16): 5717-23, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685131

RESUMO

Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods.


Assuntos
Bactérias/classificação , Bactérias/genética , Biota , Queijo/microbiologia , Animais , Bovinos , Cabras , Sequenciamento de Nucleotídeos em Larga Escala , Irlanda , Leite/microbiologia , Ovinos
5.
Nutrients ; 14(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35406140

RESUMO

Fermented foods have been a part of human diet for almost 10,000 years, and their level of diversity in the 21st century is substantial. The health benefits of fermented foods have been intensively investigated; identification of bioactive peptides and microbial metabolites in fermented foods that can positively affect human health has consolidated this interest. Each fermented food typically hosts a distinct population of microorganisms. Once ingested, nutrients and microorganisms from fermented foods may survive to interact with the gut microbiome, which can now be resolved at the species and strain level by metagenomics. Transient or long-term colonization of the gut by fermented food strains or impacts of fermented foods on indigenous gut microbes can therefore be determined. This review considers the primary food fermentation pathways and microorganisms involved, the potential health benefits, and the ability of these foodstuffs to impact the gut microbiome once ingested either through compounds produced during the fermentation process or through interactions with microorganisms from the fermented food that are capable of surviving in the gastro-intestinal transit. This review clearly shows that fermented foods can affect the gut microbiome in both the short and long term, and should be considered an important element of the human diet.


Assuntos
Alimentos Fermentados , Microbioma Gastrointestinal , Dieta , Fermentação , Humanos
6.
Nutrients ; 12(6)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512787

RESUMO

Consuming fermented foods has been reported to result in improvements in a range of health parameters. These positive effects can be exerted by a combination of the live microorganisms that the fermented foods contain, as well as the bioactive components released into the foods as by-products of the fermentation process. In many instances, and particularly in dairy fermented foods, the microorganisms involved in the fermentation process belong to the lactic acid group of bacteria (LAB). An alternative approach to making some of the health benefits that have been attributed to fermented foods available is through the production of 'fermentates'. The term 'fermentate' generally relates to a powdered preparation, derived from a fermented product and which can contain the fermenting microorganisms, components of these microorganisms, culture supernatants, fermented substrates, and a range of metabolites and bioactive components with potential health benefits. Here, we provide a brief overview of a selection of in vitro and in vivo studies and patents exclusively reporting the health benefits of LAB 'fermentates'. Typically, in such studies, the potential health benefits have been attributed to the bioactive metabolites present in the crude fermentates and/or culture supernatants rather than the direct effects of the LAB strain(s) involved.


Assuntos
Alimentos Fermentados , Microbiologia de Alimentos , Lactobacillales , Fenômenos Fisiológicos da Nutrição/fisiologia , Probióticos , Inibidores da Enzima Conversora de Angiotensina , Antioxidantes , Doenças Cardiovasculares/prevenção & controle , Cognição , Produtos Fermentados do Leite/microbiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Fermentação , Alimentos Fermentados/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Microbioma Gastrointestinal , Humanos , Imunomodulação
7.
J Agric Food Chem ; 54(21): 8229-35, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17032033

RESUMO

To assess the contribution of starter lactic acid bacteria (LAB) to lipolysis in Cheddar cheese, the evolution of free fatty acids (FFAs) was monitored in Cheddar cheeses manufactured from pasteurized milks with or without starter. Starter-free cheeses were acidified by a combination of lactic acid and glucono-delta-lactone. Starter cultures were found to actively produce FFAs in the cheese vat, and mean levels of FFAs were significantly higher in starter cheeses over ripening. The contribution of nonstarter LAB toward lipolysis appears minimal, especially in starter-acidified cheeses. It is postulated that the moderate increases in FFAs in Cheddar cheese are primarily due to lack of access of esterase of LAB to suitable lipid substrate. The results of this study indicate that starter esterases are the primary contributors to lipolysis in Cheddar cheese made from good quality pasteurized milk.


Assuntos
Queijo/microbiologia , Esterases/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lactococcus/enzimologia , Animais , Queijo/análise , Manipulação de Alimentos/métodos , Lactococcus lactis/enzimologia , Lipólise , Leite/microbiologia , Peptídeo Hidrolases/metabolismo
8.
mSystems ; 1(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822529

RESUMO

A DNA sequencing-based strategy was applied to study the microbiology of Continental-type cheeses with a pink discoloration defect. The basis for this phenomenon has remained elusive, despite decades of research. The bacterial composition of cheese containing the defect was compared to that of control cheese using 16S rRNA gene and shotgun metagenomic sequencing as well as quantitative PCR (qPCR). Throughout, it was apparent that Thermus, a carotenoid-producing genus, was present at higher levels in defect-associated cheeses than in control cheeses. Prompted by this finding and data confirming the pink discoloration to be associated with the presence of a carotenoid, a culture-based approach was employed, and Thermus thermophilus was successfully cultured from defect-containing cheeses. The link between Thermus and the pinking phenomenon was then established through the cheese defect equivalent of Koch's postulates when the defect was recreated by the reintroduction of a T. thermophilus isolate to a test cheese during the manufacturing process. IMPORTANCE Pink discoloration in cheese is a defect affecting many cheeses throughout the world, leading to significant financial loss for the dairy industry. Despite decades of research, the cause of this defect has remained elusive. The advent of high-throughput, next-generation sequencing has revolutionized the field of food microbiology and, with respect to this study, provided a means of testing a possible microbial basis for this defect. In this study, a combined 16S rRNA, whole-genome sequencing, and quantitative PCR approach was taken. This resulted in the identification of Thermus, a carotenoid-producing thermophile, in defect-associated cheeses and the recreation of the problem in cheeses to which Thermus was added. This finding has the potential to lead to new strategies to eliminate this defect, and our method represents an approach that can be employed to investigate the role of microbes in other food defects of unknown origin.

9.
Front Microbiol ; 6: 1418, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26733963

RESUMO

Milk produced in udder cells is sterile but due to its high nutrient content, it can be a good growth substrate for contaminating bacteria. The quality of milk is monitored via somatic cell counts and total bacterial counts, with prescribed regulatory limits to ensure quality and safety. Bacterial contaminants can cause disease, or spoilage of milk and its secondary products. Aerobic spore-forming bacteria, such as those from the genera Sporosarcina, Paenisporosarcina, Brevibacillus, Paenibacillus, Geobacillus and Bacillus, are a particular concern in this regard as they are able to survive industrial pasteurization and form biofilms within pipes and stainless steel equipment. These single or multiple-species biofilms become a reservoir of spoilage microorganisms and a cycle of contamination can be initiated. Indeed, previous studies have highlighted that these microorganisms are highly prevalent in dead ends, corners, cracks, crevices, gaskets, valves and the joints of stainless steel equipment used in the dairy manufacturing plants. Hence, adequate monitoring and control measures are essential to prevent spoilage and ensure consumer safety. Common controlling approaches include specific cleaning-in-place processes, chemical and biological biocides and other novel methods. In this review, we highlight the problems caused by these microorganisms, and discuss issues relating to their prevalence, monitoring thereof and control with respect to the dairy industry.

10.
Int J Food Microbiol ; 197: 77-87, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25574847

RESUMO

Sporeforming bacteria are a significant concern for the international dairy industry. Spores present in milk survive heat treatments and can persist during downstream processing. If they are present in sufficient numbers in dairy products they can cause spoilage or lead to illness as a result of toxin production. While many reviews have highlighted the threat posed by spores of aerobic bacteria to the dairy industry, few have focused on problems caused by the array of different species of anaerobic sporeformers (Clostridium and related genera) that can be found in milk. This is despite of the fact that members of these bacteria are found throughout the dairy farm environment, and can be toxigenic, neurotoxigenic or spoilage bacteria. This makes the possible presence of Clostridium and related spores in bulk tank milk (BTM) important from both a financial and a public health perspective. In this review dairy associated anaerobic sporeformers are assessed from a number of perspectives. This includes the taxonomy of this group of bacteria, the important subgroup of this genus the "sulphite reducing clostridia" (SRC), how these bacteria are detected in milk products, the epidemiological data regarding pathogenic species and strains within the SRC group as well as the influence of farming practices on the presence of SRC in BTM.


Assuntos
Clostridium/fisiologia , Laticínios/microbiologia , Microbiologia de Alimentos , Leite/microbiologia , Animais , Clostridium/classificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/transmissão , Indústria de Laticínios/normas , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Saúde Pública/normas
11.
FEMS Microbiol Rev ; 37(5): 664-98, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23808865

RESUMO

Here, we review what is known about the microorganisms present in raw milk, including milk from cows, sheep, goats and humans. Milk, due to its high nutritional content, can support a rich microbiota. These microorganisms enter milk from a variety of sources and, once in milk, can play a number of roles, such as facilitating dairy fermentations (e.g. Lactococcus, Lactobacillus, Streptococcus, Propionibacterium and fungal populations), causing spoilage (e.g. Pseudomonas, Clostridium, Bacillus and other spore-forming or thermoduric microorganisms), promoting health (e.g. lactobacilli and bifidobacteria) or causing disease (e.g. Listeria, Salmonella, Escherichia coli, Campylobacter and mycotoxin-producing fungi). There is also concern that the presence of antibiotic residues in milk leads to the development of resistance, particularly among pathogenic bacteria. Here, we comprehensively review these topics, while comparing the approaches, both culture-dependent and culture-independent, which can be taken to investigate the microbial composition of milk.


Assuntos
Microbiota , Leite Humano/microbiologia , Leite/microbiologia , Animais , Inocuidade dos Alimentos , Armazenamento de Alimentos , Humanos
12.
Int J Food Microbiol ; 150(2-3): 81-94, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21868118

RESUMO

The availability and application of culture-independent tools that enable a detailed investigation of the microbiota and microbial biodiversity of food systems has had a major impact on food microbiology. This review focuses on the application of DNA-based technologies, such as denaturing gradient gel electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE), single stranded conformation polymorphisms (SSCP), the polymerase chain reaction (PCR) and others, to investigate the diversity, dynamics and identity of microbes in dairy products from raw milk. Here, we will highlight the benefits associated with culture-independent methods which include enhanced sensitivity, rapidity and the detection of microorganisms not previously associated with such products.


Assuntos
Bactérias/genética , Técnicas de Tipagem Bacteriana/métodos , Queijo/microbiologia , Microbiologia de Alimentos , Leite/microbiologia , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Biodiversidade , Contagem de Colônia Microbiana , DNA Bacteriano/análise , DNA Bacteriano/genética , Eletroforese em Gel de Ágar , Humanos , Leite/química , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples
13.
J Dairy Res ; 74(1): 9-17, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16987432

RESUMO

A detailed investigation was undertaken to determine the effects of four single starter strains, Lactococcus lactis subsp. lactis 303, Lc. lactis subsp. cremoris HP, Lc. lactis subsp. cremoris AM2, and Lactobacillus helveticus DPC4571 on the proteolytic, lipolytic and sensory characteristics of Cheddar cheese. Cheeses produced using the highly autolytic starters 4571 and AM2 positively impacted on flavour development, whereas cheeses produced from the poorly autolytic starters 303 and HP developed off-flavours. Starter selection impacted significantly on the proteolytic and sensory characteristics of the resulting Cheddar cheeses. It appeared that the autolytic and/or lipolytic properties of starter strains also influenced lipolysis, however lipolysis appeared to be limited due to a possible lack of availability or access to suitable milk fat substrates over ripening. The impact of lipolysis on the sensory characteristics of Cheddar cheese was unclear, possibly due to minimal differences in the extent of lipolysis between the cheeses at the end of ripening. As anticipated seasonal milk supply influenced both proteolysis and lipolysis in Cheddar cheese. The contribution of non-starter lactic acid bacteria towards proteolysis and lipolysis over the first 8 months of Cheddar cheese ripening was negligible.


Assuntos
Queijo/microbiologia , Queijo/normas , Lactococcus/fisiologia , Animais , Queijo/análise , Manipulação de Alimentos/métodos , Lipólise , Leite/microbiologia , Peptídeo Hidrolases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA