Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364990

RESUMO

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Hipercalciúria/genética , Rim/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo
2.
Calcif Tissue Int ; 114(2): 137-146, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37981601

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of phosphate homeostasis. We describe a single-center experience of genetically proven HHRH families and perform systematic review phenotype-genotype correlation in reported biallelic probands and their monoallelic relatives. Detailed clinical, biochemical, radiological, and genetic data were retrieved from our center and a systematic review of Pub-Med and Embase databases for patients and relatives who were genetically proven. Total of nine subjects (probands:5) carrying biallelic SLC34A3 mutations (novel:2) from our center had a spectrum from rickets/osteomalacia to normal BMD, with hypophosphatemia and hypercalciuria in all. We describe the first case of genetically proven HHRH with enthesopathy. Elevated FGF23 in another patient with hypophosphatemia, iron deficiency anemia, and noncirrhotic periportal fibrosis led to initial misdiagnosis as tumoral osteomalacia. On systematic review of 58 probands (with biallelic SLC34A3 mutations; 35 males), early-onset HHRH and renal calcification were present in ~ 70% and late-onset HHRH in 10%. c.575C > T p.(Ser192Leu) variant occurred in 53% of probands without skeletal involvement. Among 110 relatives harboring monoallelic SLC34A3 mutation at median age 38 years, renal calcification, hypophosphatemia, high 1,25(OH)2D, and hypercalciuria were observed in ~30%, 22.3%, 40%, and 38.8%, respectively. Renal calcifications correlated with age but were similar across truncating and non-truncating variants. Although most relatives were asymptomatic for bone involvement, 6/12(50%) had low bone mineral density. We describe the first monocentric HHRH case series from India with varied phenotypes. In a systematic review, frequent renal calcifications and low BMD in relatives with monoallelic variants (HHRH trait) merit identification.


Assuntos
Entesopatia , Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Doenças Renais Císticas , Nefrocalcinose , Osteomalacia , Masculino , Humanos , Adulto , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Osteomalacia/complicações , Osteomalacia/genética
3.
Am J Med Genet A ; 191(8): 2164-2174, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37218523

RESUMO

A 54-year-old man with a history of unimelic, post-traumatic multifocal heterotopic ossification (HO) and normal genetic analysis of ACVR1 and GNAS had variants of unknown significance (VUS) in PDLIM-7 (PDZ and LIM Domain Protein 7), the gene encoding LMP-1 (LIM Mineralization Protein-1), an intracellular protein involved in the bone morphogenetic protein (BMP) pathway signaling and ossification. In order to determine if the LMP-1 variants were plausibly responsible for the phenotype observed, a series of in vitro experiments were conducted. C2C12 cells were co-transfected with a BMP-responsive reporter as well as the LMP-1 wildtype (wt) construct or the LMP-1T161I or the LMP-1D181G constructs (herein designated as LMP-161 or LMP-181) corresponding to the coding variants detected in the patient. A significantly increased BMP-reporter activity was observed in LMP-161 or LMP-181 transfected cells compared to the wt cells. The LMP-181 variant exhibited BMP-reporter activity with a four-fold increase over the LMP-1 wt protein. Similarly, mouse pre-osteoblastic MC3T3 cells transfected with the patient's LMP-1 variants expressed higher levels of osteoblast markers both at mRNA and protein levels and preferentially mineralized when stimulated with recombinant BMP-2 compared to control cells. Presently, there are no pathogenic variants of LMP-1 known to induce HO in humans. Our findings suggest that the germline variants in LMP-1 detected in our patient are plausibly related to his multifocal HO (LMP1-related multifocal HO). Further observations will be required to firmly establish this gene-disease relationship.


Assuntos
Miosite Ossificante , Ossificação Heterotópica , Camundongos , Humanos , Animais , Pessoa de Meia-Idade , Linhagem Celular , Ossificação Heterotópica/genética , Ossificação Heterotópica/patologia , Transdução de Sinais , Osteogênese , Células Germinativas/metabolismo , Miosite Ossificante/genética , Receptores de Ativinas Tipo I/genética
4.
Pflugers Arch ; 471(1): 149-163, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30109410

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/genética , Fosfatos/sangue , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Animais , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Fator de Crescimento de Fibroblastos 23 , Humanos , Hipercalciúria/diagnóstico , Hipercalciúria/tratamento farmacológico , Mutação com Perda de Função , Fosfatos/uso terapêutico , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Vitamina D/sangue , Vitamina D/uso terapêutico , Vitaminas/sangue , Vitaminas/uso terapêutico
7.
Am J Physiol Renal Physiol ; 312(1): F77-F83, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784695

RESUMO

Mutations in the renal sodium-dependent phosphate cotransporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis. Oral phosphate supplementation is currently thought to reduce risk by reversing the hypercalciuria, but the exact mechanism remains unclear and the relative contribution of modifiers of mineralization such as osteopontin (Opn) to the formation of renal mineral deposits in renal phosphate wasting disorders has not been studied. We observed a marked decrease of renal gene expression and urinary excretion of Opn in Npt2a-/- mice, a mouse model of these disorders, at baseline. Following supplementation with phosphate Opn gene expression was restored to wild-type levels in Npt2a-/- mice; however, urine excretion of the protein remained low. To further investigate the role of Opn, we used a double-knockout strategy, which provides evidence that loss of Opn worsens the nephrocalcinosis and nephrolithiasis observed in these mice on a high-phosphate diet. These studies suggest that impaired Opn gene expression and urinary excretion in Npt2a-/- mice may be an additional risk factor for nephrolithiasis, and normalizing urine Opn levels may improve the therapy of phosphaturic disorders.


Assuntos
Raquitismo Hipofosfatêmico Familiar/metabolismo , Hipercalciúria/metabolismo , Rim/metabolismo , Nefrocalcinose/metabolismo , Osteopontina/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Animais , Feminino , Fatores de Crescimento de Fibroblastos/genética , Hipofosfatemia/genética , Masculino , Camundongos Knockout , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
8.
FASEB J ; 30(10): 3378-3387, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338702

RESUMO

Hypophosphatemia can lead to muscle weakness and respiratory and heart failure, but the mechanism is unknown. To address this question, we noninvasively assessed rates of muscle ATP synthesis in hypophosphatemic mice by using in vivo saturation transfer [31P]-magnetic resonance spectroscopy. By using this approach, we found that basal and insulin-stimulated rates of muscle ATP synthetic flux (VATP) and plasma inorganic phosphate (Pi) were reduced by 50% in mice with diet-induced hypophosphatemia as well as in sodium-dependent Pi transporter solute carrier family 34, member 1 (NaPi2a)-knockout (NaPi2a-/-) mice compared with their wild-type littermate controls. Rates of VATP normalized in both hypophosphatemic groups after restoring plasma Pi concentrations. Furthermore, VATP was directly related to cellular and mitochondrial Pi uptake in L6 and RC13 rodent myocytes and isolated muscle mitochondria. Similar findings were observed in a patient with chronic hypophosphatemia as a result of a mutation in SLC34A3 who had a 50% reduction in both serum Pi content and muscle VATP After oral Pi repletion and normalization of serum Pi levels, muscle VATP completely normalized in the patient. Taken together, these data support the hypothesis that decreased muscle ATP synthesis, in part, may be caused by low blood Pi concentrations, which may explain some aspects of muscle weakness observed in patients with hypophosphatemia.-Pesta, D. H., Tsirigotis, D. N., Befroy, D. E., Caballero, D., Jurczak, M. J., Rahimi, Y., Cline, G. W., Dufour, S., Birkenfeld, A. L., Rothman, D. L., Carpenter, T. O., Insogna, K., Petersen, K. F., Bergwitz, C., Shulman, G. I. Hypophosphatemia promotes lower rates of muscle ATP synthesis.


Assuntos
Trifosfato de Adenosina/biossíntese , Hipofosfatemia/metabolismo , Insulina/metabolismo , Mitocôndrias Musculares/metabolismo , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Animais , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatos/metabolismo
9.
J Am Soc Nephrol ; 25(10): 2366-75, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700880

RESUMO

Compound heterozygous and homozygous (comp/hom) mutations in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium (Na(+))-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a disorder characterized by renal phosphate wasting resulting in hypophosphatemia, correspondingly elevated 1,25(OH)2 vitamin D levels, hypercalciuria, and rickets/osteomalacia. Similar, albeit less severe, biochemical changes are observed in heterozygous (het) carriers and indistinguishable from those changes encountered in idiopathic hypercalciuria (IH). Here, we report a review of clinical and laboratory records of 133 individuals from 27 kindreds, including 5 previously unreported HHRH kindreds and two cases with IH, in which known and novel SLC34A3 mutations (c.1357delTTC [p.F453del]; c.G1369A [p.G457S]; c.367delC) were identified. Individuals with mutations affecting both SLC34A3 alleles had a significantly increased risk of kidney stone formation or medullary nephrocalcinosis, namely 46% compared with 6% observed in healthy family members carrying only the wild-type SLC34A3 allele (P=0.005) or 5.64% in the general population (P<0.001). Renal calcifications were also more frequent in het carriers (16%; P=0.003 compared with the general population) and were more likely to occur in comp/hom and het individuals with decreased serum phosphate (odds ratio [OR], 0.75, 95% confidence interval [95% CI], 0.59 to 0.96; P=0.02), decreased tubular reabsorption of phosphate (OR, 0.41; 95% CI, 0.23 to 0.72; P=0.002), and increased serum 1,25(OH)2 vitamin D (OR, 1.22; 95% CI, 1.05 to 1.41; P=0.008). Additional studies are needed to determine whether these biochemical parameters are independent of genotype and can guide therapy to prevent nephrocalcinosis, nephrolithiasis, and potentially, CKD.


Assuntos
Cálculos Renais/genética , Nefrocalcinose/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto
10.
Cell Rep ; 43(7): 114397, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38935499

RESUMO

With exercise, muscle and bone produce factors with beneficial effects on brain, fat, and other organs. Exercise in mice increased fibroblast growth factor 23 (FGF23), urine phosphate, and the muscle metabolite L-ß-aminoisobutyric acid (L-BAIBA), suggesting that L-BAIBA may play a role in phosphate metabolism. Here, we show that L-BAIBA increases in serum with exercise and elevates Fgf23 in osteocytes. The D enantiomer, described to be elevated with exercise in humans, can also induce Fgf23 but through a delayed, indirect process via sclerostin. The two enantiomers both signal through the same receptor, Mas-related G-protein-coupled receptor type D, but activate distinct signaling pathways; L-BAIBA increases Fgf23 through Gαs/cAMP/PKA/CBP/ß-catenin and Gαq/PKC/CREB, whereas D-BAIBA increases Fgf23 indirectly through sclerostin via Gαi/NF-κB. In vivo, both enantiomers increased Fgf23 in bone in parallel with elevated urinary phosphate excretion. Thus, exercise-induced increases in BAIBA and FGF23 work together to maintain phosphate homeostasis.

11.
J Biol Chem ; 286(2): 1618-26, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21047792

RESUMO

The parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor (PTHR1) in cells of the renal proximal tubule mediates the reduction in membrane expression of the sodium-dependent P(i) co-transporters, NPT2a and NPT2c, and thus suppresses the re-uptake of P(i) from the filtrate. In most cell types, the liganded PTHR1 activates Gα(S)/adenylyl cyclase/cAMP/PKA (cAMP/PKA) and Gα(q/11)/phospholipase C/phosphatidylinositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/PKC (IP(3)/PKC) signaling pathways, but the relative roles of each pathway in mediating renal regulation P(i) transport remain uncertain. We therefore explored the signaling mechanisms involved in PTH-dependent regulation of NPT2a function using potent, long-acting PTH analogs, M-PTH(1-28) (where M = Ala(1,12), Aib(3), Gln(10), Har(11), Trp(14), and Arg(19)) and its position 1-modified variant, Trp(1)-M-PTH(1-28), designed to be phospholipase C-deficient. In cell-based assays, both M-PTH(1-28) and Trp(1)-M-PTH(1-28) exhibited potent and prolonged cAMP responses, whereas only M-PTH(1-28) was effective in inducing IP(3) and intracellular calcium responses. In opossum kidney cells, a clonal cell line in which the PTHR1 and NPT2a are endogenously expressed, M-PTH(1-28) and Trp(1)-M-PTH(1-28) each induced reductions in (32)P uptake, and these responses persisted for more than 24 h after ligand wash-out, whereas that of PTH(1-34) was terminated by 4 h. When injected into wild-type mice, both M-modified PTH analogs induced prolonged reductions in blood P(i) levels and commensurate reductions in NPT2a expression in the renal brush border membrane. Our findings suggest that the acute down-regulation of NPT2a expression by PTH ligands involves mainly the cAMP/PKA signaling pathway and are thus consistent with the elevated blood P(i) levels seen in pseudohypoparathyroid patients, in whom Gα(s)-mediated signaling in renal proximal tubule cells is defective.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hormônio Paratireóideo/metabolismo , Pseudo-Hipoparatireoidismo/metabolismo , Transdução de Sinais/fisiologia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Células COS , Bovinos , Chlorocebus aethiops , Regulação para Baixo/fisiologia , Humanos , Técnicas In Vitro , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gambás , Osteoblastos/citologia , Osteoblastos/metabolismo , Hormônio Paratireóideo/análogos & derivados , Hormônio Paratireóideo/genética , Fósforo/sangue , Ratos , Sódio/metabolismo
12.
Annu Rev Med ; 61: 91-104, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20059333

RESUMO

In contrast to the regulation of calcium homeostasis, which has been extensively studied over the past several decades, relatively little is known about the regulation of phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and serum phosphorus levels. Synthesis and secretion of FGF23 by osteocytes are positively regulated by 1,25(OH)(2)D and serum phosphorus and negatively regulated, through yet unknown mechanisms, by the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by dentin matrix protein 1 (DMP1). In turn, FGF23 inhibits the synthesis of 1,25(OH)(2)D, and it may negatively regulate the secretion of parathyroid hormone (PTH) from the parathyroid glands. However, FGF23 synergizes with PTH to increase renal phosphate excretion by reducing expression of the renal sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Most insights gained into the regulation of phosphate homeostasis by these factors are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper.


Assuntos
Calcitriol/fisiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Homeostase/fisiologia , Hormônio Paratireóideo/fisiologia , Fosfatos/sangue , Distúrbios do Metabolismo do Fósforo/etiologia , Fator de Crescimento de Fibroblastos 23 , Humanos
13.
Nephrol Dial Transplant ; 27(9): 3399-406, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22942172

RESUMO

Phosphate is required for many important cellular processes and having too little phosphate (hypophosphatemia) or too much (hyperphosphatemia) can cause disease and reduce lifespan in humans. Drosophila melanogaster has been a powerful tool to discover evolutionarily well-conserved nutrient-sensing pathways that are important for the lifespan extension. We have established Drosophila as a model system for studying the effects of dietary phosphate during development and adult life. When absorption of phosphate is blocked by sevelamer or cellular uptake is inhibited by phosphonoformic acid (PFA), larval development is delayed in a phosphate-dependent fashion. Conversely, restriction of phosphate absorption with sevelamer or reduced cellular uptake after treatment with PFA is able to extend the adult lifespan of otherwise normal flies. Gaining an understanding of the specific pathways and mediators that regulate cellular and organismic phosphate levels might ultimately lead to the development of improved dietary and therapeutic approaches to the treatment of human disorders of hypo- and hyperphosphatemia.


Assuntos
Drosophila melanogaster/fisiologia , Longevidade/fisiologia , Fósforo na Dieta/administração & dosagem , Fósforo na Dieta/farmacologia , Adulto , Animais , Drosophila melanogaster/efeitos dos fármacos , Humanos , Longevidade/efeitos dos fármacos
14.
Adv Exp Med Biol ; 728: 41-64, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396161

RESUMO

Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and circulating phosphate and possibly PTH. FGF23 was discovered as the humoral factor in tumors that causes hypophosphatemia and osteomalacia and through the identification of a mutant form of FGF23 that leads to autosomal dominant hypophosphatemic rickets (ADHR), a rare genetic disorder. FGF23 appears to be mainly secreted by osteocytes where its expression is up-regulated by 1,25(OH)(2)D and probably by increased serum phosphate levels. Its synthesis and secretion is reduced through yet unknown mechanisms that involve the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1) and ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Consequently, loss-of-function mutations in these genes underlie hypophosphatemic disorders that are either X-linked or autosomal recessive. Impaired O-glycosylation of FGF23 due to the lack of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyl-transferase 3 (GALNT3) or due to certain homozygous FGF23 mutations results in reduced secretion of intact FGF23 and leads to familial hyperphosphatemic tumoral calcinosis. FGF23 acts through FGF-receptors and the coreceptor Klotho to reduce 1,25(OH)(2)D synthesis in the kidney and probably the synthesis of parathyroid hormone (PTH) by the parathyroid glands. It furthermore synergizes with PTH to increase renal phosphate excretion by reducing expression of the sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Loss-of-function mutations in these two transporters lead to autosomal recessive Fanconi syndrome or to hereditary hypophosphatemic rickets with hypercalciuria, respectively.


Assuntos
Anormalidades Múltiplas/metabolismo , Fatores de Crescimento de Fibroblastos , Nefropatias/metabolismo , Fosfatos/metabolismo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/terapia , Animais , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/biossíntese , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Homeostase/genética , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Nefropatias/terapia , Síndrome
15.
BMC Bioinformatics ; 12: 357, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21880147

RESUMO

BACKGROUND: Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. RESULTS: We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt), for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM) and genes in genome-wide association study (GWAS) data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist). CONCLUSIONS: DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.


Assuntos
Modelos Animais de Doenças , Doença/genética , Animais , Bases de Dados Genéticas , Evolução Molecular , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos
16.
Am J Med Genet A ; 155A(3): 626-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21344632

RESUMO

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is characterized by rickets, hyperphosphaturia, hypophosphatemia, elevated 1,25-dihydroxyvitamin-D, increased gastrointestinal calcium absorption and hypercalciuria. Serum calcium, 25-hydroxyvitamin-D and PTH levels are normal. Here we describe a boy with HHRH, nephrolithiasis, and compound heterozygosity for one previously described mutation (g.4225_50del) and a novel splice mutation (g.1226G>A) in SLC34A3, the gene encoding the renal sodium-phosphate co-transporter NaPi-IIc. The patient's mother and grandmother are carriers of g.4225_50del, and both have a history of nephrolithiasis associated with hypercalciuria and elevated 1,25-dihydroxyvitamin-D. His three siblings (2-6 years old), who are also carriers of g.4225_50del, have hypercalciuria but so far their renal ultrasounds are normal. Thus, SLC34A3/NaPi-IIc mutations appear to be associated with variable phenotypic changes at presentation, which can include recurrent nephrolithiasis.


Assuntos
Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Hipercalciúria/complicações , Hipercalciúria/genética , Mutação/genética , Nefrolitíase/complicações , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética , Sequência de Bases , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Nefrolitíase/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
PLoS Genet ; 4(8): e1000154, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18688277

RESUMO

Maintenance of physiologic phosphate balance is of crucial biological importance, as it is fundamental to cellular function, energy metabolism, and skeletal mineralization. Fibroblast growth factor-23 (FGF-23) is a master regulator of phosphate homeostasis, but the molecular mechanism of such regulation is not yet completely understood. Targeted disruption of the Fgf-23 gene in mice (Fgf-23-/-) elicits hyperphosphatemia, and an increase in renal sodium/phosphate co-transporter 2a (NaPi2a) protein abundance. To elucidate the pathophysiological role of augmented renal proximal tubular expression of NaPi2a in Fgf-23-/- mice and to examine serum phosphate-independent functions of Fgf23 in bone, we generated a new mouse line deficient in both Fgf-23 and NaPi2a genes, and determined the effect of genomic ablation of NaPi2a from Fgf-23-/- mice on phosphate homeostasis and skeletal mineralization. Fgf-23-/-/NaPi2a-/- double mutant mice are viable and exhibit normal physical activities when compared to Fgf-23-/- animals. Biochemical analyses show that ablation of NaPi2a from Fgf-23-/- mice reversed hyperphosphatemia to hypophosphatemia by 6 weeks of age. Surprisingly, despite the complete reversal of serum phosphate levels in Fgf-23-/-/NaPi2a-/-, their skeletal phenotype still resembles the one of Fgf23-/- animals. The results of this study provide the first genetic evidence of an in vivo pathologic role of NaPi2a in regulating abnormal phosphate homeostasis in Fgf-23-/- mice by deletion of both NaPi2a and Fgf-23 genes in the same animal. The persistence of the skeletal anomalies in double mutants suggests that Fgf-23 affects bone mineralization independently of systemic phosphate homeostasis. Finally, our data support (1) that regulation of phosphate homeostasis is a systemic effect of Fgf-23, while (2) skeletal mineralization and chondrocyte differentiation appear to be effects of Fgf-23 that are independent of phosphate homeostasis.


Assuntos
Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Hipofosfatemia/metabolismo , Fosfatos/metabolismo , Animais , Densidade Óssea , Osso e Ossos/fisiopatologia , Calcificação Fisiológica , Células Cultivadas , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Hipofosfatemia/genética , Hipofosfatemia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Osteoblastos/metabolismo , Fenótipo , Soro/química , Crânio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Urina/química
18.
J Mol Endocrinol ; 66(2): R23-R32, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338030

RESUMO

Fibroblast growth factor 23 (FGF23) is a phosphotropic hormone that belongs to a subfamily of endocrine FGFs with evolutionarily conserved functions in worms and fruit flies. FAM20C phosphorylates FGF23 post-translationally, targeting it to proteolysis through subtilisin-like proprotein convertase FURIN, resulting in secretion of FGF23 fragments. O-glycosylation of FGF23 through GALNT3 appears to prevent proteolysis, resulting in secretion of biologically active intact FGF23. In the circulation, FGF23 may undergo further processing by plasminogen activators. Crystal structures show that the ectodomain of the cognate FGF23 receptor FGFR1c binds with the ectodomain of the co-receptor alpha-KLOTHO. The KLOTHO-FGFR1c double heterodimer creates a high-affinity binding site for the FGF23 C-terminus. The topology of FGF23 deviates from that of paracrine FGFs, resulting in poor affinity for heparan sulphate, which may explain why FGF23 diffuses freely in the bone matrix to enter the bloodstream following its secretion by cells of osteoblastic lineage. Intact FGF23 signalling by this canonical pathway activates FRS2/RAS/RAF/MEK/ERK1/2. It reduces serum phosphate by inhibiting 1,25-dihydroxyvitamin D synthesis, suppressing intestinal phosphate absorption, and by downregulating the transporters NPT2a and NPT2c, suppressing phosphate reabsorption in the proximal tubules. The physiological role of FGF23 fragments, which may be inhibitory, remains unclear. Pharmacological and genetic activation of canonical FGF23 signalling causes hypophosphatemic disorders, while its inhibition results in hyperphosphatemic disorders. Non-canonical FGF23 signalling through binding and activation of FGFR3/FGFR4/calcineurin/NFAT in an alpha-KLOTHO-independent fashion mainly occurs at extremely elevated circulating FGF23 levels and may contribute to mortality due to cardiovascular disease and left ventricular hypertrophy in chronic kidney disease.


Assuntos
Fator de Crescimento de Fibroblastos 23/metabolismo , Transdução de Sinais , Animais , Sequência Conservada , Evolução Molecular , Fator de Crescimento de Fibroblastos 23/química , Homeostase , Humanos , Fosfatos/sangue
19.
Nutr Res ; 85: 71-83, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450668

RESUMO

Retrospective chart reviews have reported hypophosphatemia associated with elemental formula use in infants and children with systemic disease involving multiple diagnoses. The present study aims to evaluate the bioavailability of phosphorus from 2 commercial elemental formulas and to test our hypothesis of bioequivalence of the 2 products in healthy volunteers receiving gastric acid-suppressive medication. A single-center, double-blind, randomized, cross-over study was conducted in healthy volunteers with esomeprazole-induced hypochlorhydria. After a standardized low phosphorus meal followed by overnight fasting, subjects consumed 1 gram of phosphorus in a single oral dose of 1217 kcal of Product A (Neocate) or Product B (Elecare). The alternate product was given following a 1-week washout period. Blood and urine were collected at baseline and different time-points for up to 6 hours after product consumption. Area-under-the-curve (AUC) and peak values (Cpeak) for serum phosphate and calcium and urinary creatinine-corrected phosphate and calcium were assessed for bioequivalence of Products A and B. Results show that the geometric mean ratio (GMR) and 90% CI for serum phosphate were 1.041 (0.998-1.086) and 1.020 (0.963-1.080) for AUC0-360 and Cpeak, respectively, meeting the predetermined criteria for bioequivalence. Urinary creatinine-corrected phosphate followed a similar pattern after intake of Product A and B, but did not reach bioequivalence criteria (GMR: AUC70-370 = 1.105 (0.918-1.330); Cpeak = 1.182 (1.040-1.343)). Serum calcium concentrations (GMR: AUC0-360 = 1.002 (0.996-1.009); Cpeak = 0.991 (0.983-0.999)) and urinary creatinine-corrected calcium excretion (GMR: AUC70-370 = 1.117 (1.023-1.219); Cpeak = 1.157 (1.073-1.247)) demonstrated bioequivalence of the products. In conclusion, both elemental infant formulas showed equivalent serum phosphorus and calcium bioavailability in healthy volunteers even if combined with treatment with acid-suppressive medication.


Assuntos
Aminoácidos , Cálcio/farmacocinética , Carboidratos , Gorduras na Dieta , Fórmulas Infantis , Fosfatos/farmacocinética , Acloridria , Adulto , Fosfatase Alcalina/sangue , Aminoácidos/efeitos adversos , Disponibilidade Biológica , Glicemia/análise , Cálcio/sangue , Cálcio/urina , Carboidratos/efeitos adversos , Estudos Cross-Over , Gorduras na Dieta/efeitos adversos , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Fórmulas Infantis/efeitos adversos , Insulina/sangue , Masculino , Hormônio Paratireóideo/sangue , Fosfatos/sangue , Fosfatos/urina , Equivalência Terapêutica , Adulto Jovem
20.
Nutrition ; 89: 111291, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111672

RESUMO

OBJECTIVE: The aim of this study was to quantify the bioaccessibility of phosphorus from amino acid-based formulas (AAFs) under different digestive conditions. METHODS: We developed in-vitro batch digestion models with stomach digestion at different pH mimicking the normal digestive condition and conditions representing use of acid-suppressive medication. To validate bioaccessibility findings, we devised a low phosphorus murine model to test phosphorus bioavailability under compromised digestive conditions using proton pump inhibitors (PPIs) to neutralize stomach pH. RESULTS: In vitro phosphorus bioaccessibility of AAFs Neocate® Infant and Neocate Junior ranged between 57% and 65% under normal digestive conditions for infants (stomach pH 3.5) and between 38% and 46% under conditions that simulated bypass of stomach acidification, which is comparable to control diet and two EleCare® AAFs. In vivo bioavailability analysis showed that both Neocate formulas were able to normalize plasma phosphorus levels when administered to low phosphorus mice along with PPIs (control diet + PPI 8 ± 0.4; Neocate Infant 10.1 ± 0.9; Neocate Junior 9.2 ± 0.6; EleCare Infant 8.6 ± 0.4; EleCare Junior 8.7 ± 0.5; n = 8-10; P < 0.0001 versus baseline 3.4 ± 0.2 mg/dL). In comparison, plasma phosphorus levels remained lower on the low phosphorus diet (5.7 ± 0.2 mg/dL). Furthermore, urinary phosphorus/creatinine and intact fibroblast growth factor 23 were significantly lowered by low phosphorus diet. In contrast, intact parathyroid hormone and 1,25-dihydroxy vitamin D decreased and increased, respectively, and these parameters likewise normalized in mice administered AAFs. CONCLUSION: The present findings indicated that phosphorus bioaccessibility in the in-vitro batch digestion model translates well into phosphorus bioavailability in mice even under compromised digestive conditions that bypass gastric acidification.


Assuntos
Fósforo , Estômago , Aminoácidos , Animais , Disponibilidade Biológica , Digestão , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA