Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nano Lett ; 23(15): 6823-6830, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486802

RESUMO

The high-flash heat generated by direct contact at asperity tips under high contact stress and shear significantly promotes the tribocatalytic reaction between a lubricating medium and a friction interface. Macroscale superlubricity can be achieved by using additives with good lubrication properties to promote the decomposition and transformation of a lubricating medium to form an ultralow shear interface during the friction process. This paper proposed a way to achieve self-adaptive oil-based macroscale superlubricity on different tribopairs, including steel-steel and steel-DLC (diamond-like carbon), which is based on the excellent lubricating performance of black phosphorus with active oxidation and the catalytic cleavage behavior of oil molecules on the surface of oBP. This work potentially expands the industrial application of superlubricity.

2.
Pathobiology ; 88(1): 56-68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32942274

RESUMO

BACKGROUND: A novel coronavirus, SARS-CoV-2, was identified in Wuhan, China in late 2019. This virus rapidly spread around the world causing disease ranging from minimal symptoms to severe pneumonia, which was termed coronavirus disease (i.e., COVID). Postmortem examination is a valuable tool for studying the pathobiology of this new infection. METHODS: We report the clinicopathologic findings from 32 autopsy studies conducted on patients who died of COVID-19 including routine gross and microscopic examination with applicable special and immunohistochemical staining techniques. RESULTS: SARS-CoV-2 infection was confirmed by nasopharyngeal RT-PCR in 31 cases (97%) and by immunohistochemical staining for SARS-CoV-2 spike-protein in the lung in the remaining 1 case (3%). The ethnically diverse cohort consisted of 22 males and 10 females with a mean age of 68 years (range: 30-100). Patients most commonly presented with cough (17 [55%]), shortness of breath (26 [81%]), and a low-grade fever (17 [55%]). Thirty-one (97%) of the patients had at least 1 comorbidity (mean = 4). Twenty-eight patients (88%) had widespread thromboembolic disease, as well as diffuse alveolar damage (30 [94%]), diabetic nephropathy (17 [57%]) and acute tubular injury. Patterns of liver injury were heterogeneous, featuring 10 (36%) with frequent large basophilic structures in sinusoidal endothelium, and increased immunoblast-like cells in lymph nodes. CONCLUSION: This series of autopsies from patients with COVID-19 confirms the observation that the majority of severely affected patients have significant pulmonary pathology. However, many patients also have widespread microscopic thromboses, as well as characteristic findings in the liver and lymph nodes.


Assuntos
COVID-19/virologia , Pulmão/virologia , Adulto , Idoso , Autopsia/métodos , COVID-19/patologia , Feminino , Humanos , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
3.
J Chem Phys ; 154(5): 054902, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33557536

RESUMO

Ionic liquid (IL)-based solid polymer electrolytes (SPE) with stable thermal properties and low electrical resistivity have been evaluated. Two candidates for the polymer component of the SPE, poly(ethylene glycol) diacrylate (PEGDA) and Nafion, were considered. Differential scanning calorimetry analysis and electrical resistivity tests revealed that PEGDA, in comparison to Nafion, enables the formation of uniform SPEs with lower electrical resistivity and better thermal stability within a range of 25 °C-170 °C. Therefore, PEDGA was selected for further evaluation of the IL component effect on the resulting SPE. Six IL candidates, including 1-butyl-3-methylimidazolium methanesulfonate ± methanesulfonic acid (BMIM.MS ± MSA), diethylmethylammonium triflate ±bis(trifluoromethanesulfonyl)imine (Dema.OTF±HTFSI), and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ± bis(trifluoromethanesulfonyl)imine (BMIM.TFSI ± HTFSI), were selected to test the effect of hydrophobicity/hydrophilicity of the IL on the resulting SPE. Fourier transformation infrared spectrometer analysis revealed that the BMIM.MSA-based electrolytes have the highest tendency to absorb from the environment and keep the moisture, while Dema.OTF has the fastest curing time. The SPE candidates were further evaluated for absorption characteristics of different gasses and vapors, such as N2, O2, ethanol vapor, and diluted CO/N2, that were tested with the in situ quartz crystal microbalance (QCM) technique. Among all six candidates, BMIM.MS showed the largest N2 and O2 absorption capacity from the environment. Dema.OTF + HTFSI, meanwhile, demonstrated a higher level of interactions with the ethanol vapor. In the case of CO/N2, QCM analysis revealed that BMIM.MS+MSA has the largest, ∼13 µg/cm2, absorption capacity that is reached within 400 s of being exposed to the gas mixture.

4.
Nano Lett ; 20(6): 4594-4602, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401528

RESUMO

Bioresorbable metals are quickly advancing in the field of regenerative medicine for their promises of tissue restoration without adverse consequences from their lifelong presence. Zn has recently risen to the top of bioresorbable metals with great potential as a medical implant. However, cell adhesion and colonization on the Zn substrate surface remains challenging, which could damper interfacial tissue-implant integration. Inspired by the fact that surface topography can regulate cell function and fate, we hypothesize that topography on bioresorbable Zn can dictate material biocompatibility, cell differentiation, and immunomodulation. To verify this, surface-engineered Zn plates with nano-, submicro-, and microtopographies were systematically investigated. The microscale topography exhibited increased adhesion, pronounced self-renewal, and enhanced osteogenic differentiation of bone cells as well as less macrophage inflammatory polarization, reduced platelet adhesion, and better hemocompatibility. Thus, surface topography could be a viable strategy to enhance bioresorbable Zn's biocompatibility and integration with surrounding tissues while reducing inflammation.


Assuntos
Implantes Absorvíveis , Osso e Ossos/citologia , Macrófagos/citologia , Osteogênese , Zinco , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Camundongos , Propriedades de Superfície , Titânio
5.
Molecules ; 26(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525515

RESUMO

Polymer templates play an essential role in the robust infiltration-based synthesis of functional multicomponent heterostructures with controlled structure, porosity, and composition. Such heterostructures are be used as hybrid organic-inorganic composites or as all-inorganic systems once the polymer templates are removed. Using iron oxide/alumina heterostructures formed by two-step infiltration of polystyrene-block-polyvinyl pyridine block copolymer with iron and aluminum precursors from the solution and vapor-phases, respectively, we show that the phase and morphology of iron oxide nanoparticles dramatically depend on the approach used to remove the polymer. We demonstrate that thermal and plasma oxidative treatments result in iron oxide nanoparticles with either solid or hollow morphologies, respectively, that lead to different magnetic properties of the resulting materials. Our study extends the boundaries of structure manipulations in multicomponent heterostructures synthesized using polymer infiltration synthesis, and hence their properties.


Assuntos
Nanopartículas/química , Nanoestruturas/química , Polímeros/química , Óxido de Alumínio/química , Compostos Férricos/química , Magnetismo/métodos , Nanotecnologia/métodos , Poliestirenos/química , Piridinas/química
6.
Langmuir ; 35(3): 796-803, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30614710

RESUMO

Infiltration of the polymer templates with inorganic precursors using the selective vapor-phase infiltration approach, or sequential infiltration synthesis (SIS), allows the design of materials with advanced properties. Swelling of the block co-polymer (BCP) templates enables the additional control of the structure, porosity, and thickness of the composite or inorganic materials. Here, we use the highly precise quartz crystal microbalance (QCM) technique to investigate quantitatively the effect of the micelle opening by swelling and inorganic precursor infiltrating on the evolution of porosity in amphiphilic BCPs. We show that swelling of the polystyrene- block-poly-4-vinyl pyridine (PS- b-P4VP) BCP in ethanol at 75 °C occurs rapidly and results in a stable polymer structure in 30 min. By using an alumina model system, we found that swelling enables access to all available polar domains of the PS- b-P4VP film leading to an increase in the SIS-infiltrated alumina mass as compared to the nonswelled BCP layer. Our results demonstrate that swelling of the 110 nm thick BCP template results in the formation of 192 nm thick alumina films with 2 times larger alumina mass and 4 times larger effective pore volume than in case of the nonswelled sample. In the case of the thicker polymer template, the difference due to swelling becomes even more substantial because the fraction of accessible polymer is increased much more than in thin films. Our findings provide important insights into the mechanism of the infiltration of the inorganic precursors into swelled and nonswelled, spin-coated BCP templates enabling the design of highly porous thick ceramic films by SIS.

7.
Nanotechnology ; 29(49): 495703, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30211698

RESUMO

Inorganic nanoporous materials with highly accessible pores are of great interest for the design of efficient catalytic, purification and detection systems. Limited access to the pores is a common problem associated with traditional approaches for the synthesis of porous materials, affecting the functionality of the low-density structure. Recently, infiltration of a nanoporous polymer template with inorganic precursors followed by oxidative annealing was proposed as a new and efficient approach to creating porous inorganic structures with controlled thickness, composition and pore sizes. Here, we report an ultra-high accessibility of the pores in porous films prepared via polymer-swelling-assisted sequential infiltration synthesis (SIS). Using a quartz crystal microbalance technique, we show the increased solvent adsorbing capabilities of highly porous alumina films as a result of high interconnectivity of the pores in such structures. The directionality and highly interconnected nature of the pores are demonstrated in experiments with the partial blocking of pore access by the deposition of a single-layer graphene that is not transparent to solvent. 60% of the pores remain accessible when only 20% of the surface is exposed to solvent. Using humidity detection as an example, we also show that highly porous alumina produced by polymer-swelling-assisted SIS is a promising candidate for sensing applications.

8.
RSC Adv ; 14(24): 17234-17235, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38831772

RESUMO

Diana Berman, Agnieszka Jastrzebska, Massimiliano Papi, and Andreas Rosenkranz introduce the RSC Advances themed issue on 2D materials and their applications.

9.
Polymers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337197

RESUMO

Photocatalytic self-cleaning coatings with a high surface area are important for a wide range of applications, including optical coatings, solar panels, mirrors, etc. Here, we designed a highly porous TiO2 coating with photoinduced self-cleaning characteristics and very high hydrophilicity. This was achieved using the swelling-assisted sequential infiltration synthesis (SIS) of a block copolymer (BCP) template, which was followed by polymer removal via oxidative thermal annealing. The quartz crystal microbalance (QCM) was employed to optimize the infiltration process by estimating the mass of material infiltrated into the polymer template as a function of the number of SIS cycles. This adopted swelling-assisted SIS approach resulted in a smooth uniform TiO2 film with an interconnected network of pores. The synthesized film exhibited good crystallinity in the anatase phase. The resulting nanoporous TiO2 coatings were tested for their functional characteristics. Exposure to UV irradiation for 1 h induced an improvement in the hydrophilicity of coatings with wetting angle reducing to unmeasurable values upon contact with water droplets. Furthermore, their self-cleaning characteristics were tested by measuring the photocatalytic degradation of methylene blue (MB). The synthesized porous TiO2 nanostructures displayed promising photocatalytic activity, demonstrating the degradation of approximately 92% of MB after 180 min under ultraviolet (UV) light irradiation. Thus, the level of performance was comparable to the photoactivity of commercial anatase TiO2 nanoparticles of the same quantity. Our results highlight a new robust approach for designing hydrophilic self-cleaning coatings with controlled porosity and composition.

10.
Sci Rep ; 13(1): 11057, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422461

RESUMO

Development of solid lubricant materials that render reliable performance in ambient conditions, are amenable to industrial size and design complexities, and work on engineered surfaces is reported. These coatings are composed of Ti3C2Tx-Graphene Oxide blends, spray-coated onto bearing steel surfaces. The tribological assessment was carried out in ambient environmental conditions and high contact pressures in a ball-on-disc experimental set-up. The evaluation yielded that the use of Ti3C2Tx-Graphene-Oxide coatings led to substantial reduction in friction down to 0.065 (at 1 GPa contact pressure and 100 mm/s) in comparison to the uncoated of single-component-coated surfaces, surpassing the state-of-the-art. The coatings also provided excellent protection against wear loss of the substrate and counter-face. The results were explained based on the observations from Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and nanoindentation measurements. In operando formation of a dense, hard and stiff, dangling-bond-saturated tribolayer was observed to be the reason for the sustained lubricity even at high test loads and sliding speeds. This report presents the holistic exploration and correlation of structure-property-processing pertaining to the advancement of solid lubrication science.


Assuntos
Grafite , Nanocompostos , Aço , Teste de Materiais , Fricção
11.
Polymers (Basel) ; 15(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37896332

RESUMO

The conformal nanoporous inorganic coatings with accessible pores that are stable under applied thermal and mechanical stresses represent an important class of materials used in the design of sensors, optical coatings, and biomedical systems. Here, we synthesize porous AlOx and ZnO coatings by the sequential infiltration synthesis (SIS) of two types of polymers that enable the design of porous conformal coatings-polymers of intrinsic microporosity (PIM) and block co-polymer (BCP) templates. Using quartz crystal microbalance (QCM), we show that alumina precursors infiltrate both polymer templates four times more efficiently than zinc oxide precursors. Using the quartz crystal microbalance (QCM) technique, we provide a comprehensive study on the room temperature accessibility to water and ethanol of pores in block copolymers (BCPs) and porous polymer templates using polystyrene-block-poly-4-vinyl pyridine (PS75-b-P4VP25) and polymers of intrinsic microporosity (PIM-1), polymer templates modified by swelling, and porous inorganic coatings such as AlOx and ZnO synthesized by SIS using such templates. Importantly, we demonstrate that no structural damage occurs in inorganic nanoporous AlOx and ZnO coatings synthesized via infiltration of the polymer templates during the water freezing/melting cycling tests, suggesting excellent mechanical stability of the coatings, even though the hardness of the inorganic nanoporous coating is affected by the polymer and precursor selections. We show that the hardness of the coatings is further improved by their annealing at 900 °C for 1 h, though for all the cases except ZnO obtained using the BCP template, this annealing has a negligible effect on the porosity of the material, as is confirmed by the consistency in the optical characteristics. These findings unravel new potential for the materials being used across various environment and temperature conditions.

12.
Sci Rep ; 13(1): 10914, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407597

RESUMO

High-contact stresses generated at the sliding interfaces during their relative movement provide a unique combination of local heating and shear- and load-induced compression conditions. These conditions, when involving the sliding of surfaces with certain material characteristics, may facilitate tribochemical reactions with the environment, leading to the formation of a protective, damage-suppressing tribofilm directly at the contact. Here, we employ the electrodeposition process to design a coating composed of a hard cobalt-phosphorous matrix with the inclusion of tribocatalytically-active nickel clusters. The coating is optimized in terms of its relative composition and mechanical characteristics. We demonstrate the excellent tribological performance of the coating in the presence of a hydrocarbon environment, both in the form of a liquid lubricant and as a hydrocarbon-saturated vapor. Characterization of the wear track indicates that the origin of such performance lies in the formation of a protective carbon-based tribofilm on the surface of the coating during sliding. These results contribute to the advancement of knowledge on material transformations in the contact, thus providing a robust and versatile approach to addressing tribological challenges in mechanical systems.

13.
ACS Nano ; 17(3): 2421-2430, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36696666

RESUMO

Toward the goal of achieving superlubricity, or near-zero friction, in industrially relevant material systems, solution-processed multilayer Ti3C2Tx-MoS2 blends are spray-coated onto rough 52100-grade steel surfaces as a solid lubricant. The tribological performance was assessed in a ball-on-disk configuration in a unidirectional sliding mode. The test results indicate that Ti3C2Tx-MoS2 nanocomposites led to superlubricious states, which has hitherto been unreported for both individual pristine materials, MoS2 and Ti3C2Tx, under macroscale sliding conditions, indicating a synergistic mechanism enabling the superlative performance. The processing, structure, and property correlation were studied to understand the underlying phenomena. Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed the formation of an in situ robust tribolayer that was responsible for the performance at high contact pressures (>1.1 GPa) and sliding speeds (0.1 m/s). This report presents the lowest friction obtained by either MoS2 or MXene or any combination of the two so far.

14.
ACS Appl Mater Interfaces ; 15(25): 30070-30082, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37315170

RESUMO

Inhibiting the tribological failure of mechanical assemblies which rely on fuels for lubrication is an obstacle to maintaining the lifetime of these systems with low-viscosity and low-lubricity fuels. In the present study, a MoVN-Cu nanocomposite coating was tribologically evaluated for durability in high- and low-viscosity fuels as a function of temperature, load, and sliding velocity conditions. The results indicate that the MoVN-Cu coating is effective in decreasing wear and friction relative to an uncoated steel surface. Raman spectroscopy, transmission electron microscopy, and electron-dispersive spectroscopy analysis of the MoVN-Cu worn surfaces confirmed the presence of an amorphous carbon-rich tribofilm which provides easy shearing and low friction during sliding. Further, the characterization of the formed tribofilm revealed the presence of nanoscale copper clusters overlapping with the carbon peak intensities supporting the tribocatalytic origin of the surface protection. The tribological assessment of the MoVN-Cu coating reveals that the coefficient of friction decreased with increasing material wear and initial contact pressure. These findings suggest that MoVN-Cu is a promising protective coating for fuel-lubricated assemblies due to its adaptive ability to replenish lubricious tribofilms from hydrocarbon environments.

15.
Adv Colloid Interface Sci ; 307: 102747, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932507

RESUMO

The human body involves a large number of systems subjected to contact stresses and thus experiencing wear and degradation. The limited efficacy of existing solutions constantly puts a significant financial burden on the healthcare system, more importantly, patients are suffering due to the complications following a partial or total system failure. More effective strategies are highly dependent on the availability of advanced functional materials demonstrating excellent tribological response and good biocompatibility. In this article, we review the recent progress in implementing two-dimensional (2D) materials into bio-applications involving tribological contacts. We further summarize the current challenges for future progress in the field.


Assuntos
Fricção , Humanos
16.
ACS Nano ; 16(9): 14754-14764, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36049118

RESUMO

Here, we introduce polymer of intrinsic microporosity 1 (PIM-1) to design single-layer and multilayered all-inorganic antireflective coatings (ARCs) with excellent mechanical properties. Using PIM-1 as a template in sequential infiltration synthesis (SIS), we can fabricate highly uniform, mechanically stable conformal coatings of AlOx with porosities of ∼50% and a refractive index of 1.41 compared to 1.76 for nonporous AlOx that is perfectly suited for substrates commonly used in high-end optical systems or touch screens (e.g., sapphire, conductive glass, bendable glass, etc.). We show that such films can be used as a single-layer ARC capable of reduction of the Fresnel reflections of sapphire to as low as 0.1% at 500 nm being deposited only on one side of the substrate. We also demonstrate that deposition of the second layer with higher porosity using block copolymers enables the design of graded-index double-layered coatings. AlOx structures with just two layers and a total thickness of less than 200 nm are capable of reduction of Fresnel reflections under normal illumination to below 0.5% in a broad spectral range with 0.1% reflection at 700 nm. Additionally, and most importantly, we show that highly porous single-layer and graded-index double-layered ARCs are characterized by high hardness and scratch resistivity. The hardness and the maximum reached load were 7.5 GPa and 13 mN with a scratch depth of about 130 nm, respectively, that is very promising for the structures consisting of two porous AlOx layers with 50% and 85% porosities, correspondingly. Such mechanical properties of coatings can also allow their application as protective layers for other optical coatings.

17.
ACS Nano ; 16(10): 15917-15926, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36149801

RESUMO

van der Waals (vdW) magnets are receiving ever-growing attention nowadays due to their significance in both fundamental research on low-dimensional magnetism and potential applications in spintronic devices. The high crystalline quality of vdW magnets is the key to maintaining intrinsic magnetic and electronic properties, especially when exfoliated down to the two-dimensional limit. Here, ultrahigh-quality air-stable vdW CrSBr crystals are synthesized using the direct solid-vapor synthesis method. The high single crystallinity and spatial homogeneity have been thoroughly evidenced at length scales from submm to atomic resolution by X-ray diffraction, second harmonic generation, and scanning transmission electron microscopy. More importantly, specific heat measurements of ultrahigh-quality CrSBr crystals show three thermodynamic anomalies at 185, 156, and 132 K, revealing a stage-by-stage development of the magnetic order upon cooling, which is also corroborated with the magnetization and transport results. Our ultrahigh-quality CrSBr can further be exfoliated down to monolayers and bilayers easily, providing the building blocks of heterostructures for spintronic and magneto-optoelectronic applications.

18.
ACS Nano ; 15(12): 18865-18879, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34914361

RESUMO

Under the high-contact-pressure and shear conditions of tribological interfaces lubricated by gaseous, liquid, and solid forms of carbon precursors, a variety of highly favorable tribocatalytic processes may take place and result in the in situ formation of nanocarbon-based tribofilms providing ultralow friction and wear even under extreme test conditions. Structurally, these tribofilms are rather complex and may consist of all known forms of nanocarbon including amorphous or disordered carbon, graphite, graphene, nano-onion, nanotube, etc. Tribologically, they shear readily to provide ultralow friction and protection against wear. In this paper, we review some of the latest developments in catalyst-enabled tribochemical films resulting from gaseous, liquid, and solid sources of carbon. Particular focus is given to the nature and lubrication mechanisms of such in situ derived tribofilms with the hope that future tribological surfaces can be designed in such a way to exploit the beneficial impact of catalysis in friction and wear control.

19.
Front Chem ; 9: 667878, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937204

RESUMO

Here, we report the high-temperature superlubricity phenomenon accomplished in coatings produced by burnishing powders of antimony trioxide (Sb2O3) and magnesium silicate hydroxide coated with carbon (MSH/C) onto the nickel superalloy substrate. The tribological analysis performed in an open-air experimental setup revealed that with the increase of testing temperature, the coefficient of friction (COF) of the coating gradually decreases, finally reaching the superlubricity regime (the COF of 0.008) at 300°C. The analysis of worn surfaces using in-situ Raman spectroscopy suggested the synergistic effect of the inner Sb2O3 adhesion layer and the top MSH/C layer, which do not only isolate the substrate from the direct exposure to sliding but also protect it from oxidation. The cross-sectional transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) results indicated the tribochemically-activated formation of an amorphous carbon layer on the surface of the coating during sliding. Formation of the film enables the high-temperature macroscale superlubricity behavior of the material system.

20.
Sci Rep ; 11(1): 20643, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667195

RESUMO

Minimizing the wear of the surfaces exposed to mechanical shear stresses is a critical challenge for maximizing the lifespan of rotary mechanical parts. In this study, we have discovered the anti-wear capability of a series of metal nitride-copper nanocomposite coatings tested in a liquid hydrocarbon environment. The results indicate substantial reduction of the wear in comparison to the uncoated steel substrate. Analysis of the wear tracks indicates the formation of carbon-based protective films directly at the sliding interface during the tribological tests. Raman spectroscopy mapping of the wear track suggests the amorphous carbon (a-C) nature of the formed tribofilm. Further analysis of the tribocatalytic activity of the best coating candidate, MoN-Cu, as a function of load (0.25-1 N) and temperature (25 °C and 50 °C) was performed in three alkane solutions, decane, dodecane, and hexadecane. Results indicated that elevated temperature and high contact pressure lead to different tribological characteristics of the coating tested in different environments. The elemental energy dispersive x-ray spectroscopy analysis and Raman analysis revealed formation of the amorphous carbon film that facilitates easy shearing at the contact interface thus enabling more stable friction behavior and lower wear of the tribocatalytic coating. These findings provide new insights into the tribocatalysis mechanism that enables the formation of zero-wear coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA