Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Melanoma Res ; 34(2): 186-192, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141200

RESUMO

Upregulation of phosphodiesterase type 4 (PDE4) has been associated with worse prognosis in several cancers. In melanomas harboring NRAS mutations, PDE4 upregulation has been shown to trigger a switch in signaling from BRAF to RAF1 which leads to mitogen-activated protein kinase pathway activation. Previous in vitro evidence showed that PDE4 inhibition induced death in NRASQ61mut melanoma cells and such a strategy may thus be a relevant therapeutic option in those cases with no molecular targeted therapies approved to date. In this study, we generated patient-derived xenografts (PDX) from two NRASQ61mut melanoma lesions. We performed ex vivo histoculture drug response assays and in vivo experiments. A significant ex vivo inhibition of proliferation with the combination of roflumilast+cobimetinib was observed compared to dimethyl sulfoxide control in both models (51 and 67%). This antiproliferative effect was confirmed in vivo for PDX-1 with a 56% inhibition of tumor growth. To decipher molecular mechanisms underlying this effect, we performed transcriptomic analyses and revealed a decrease in MKI67, RAF1 and CCND1 expression under bitherapy. Our findings strengthen the therapeutic interest of PDE4 inhibitors and support further experiments to evaluate this approach in metastatic melanoma.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Humanos , Dimetil Sulfóxido , Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Melanoma/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , MAP Quinase Quinase Quinases/metabolismo
2.
Cancers (Basel) ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296851

RESUMO

Because BRAF-mutated melanomas are addicted to the Mitogen Activated Protein Kinase (MAPK) pathway they show a high response rate to BRAF and MEK inhibitors. However, the clinical responses to these inhibitors are often short-lived with the rapid onset of resistance to treatment. Deciphering the molecular mechanisms driving resistance has been the subject of intense research. Recent in vitro and clinical data have suggested a link between expression of telomerase and resistance to targeted therapy in melanoma. TERT promoter mutations are the main mechanism for the continuous upregulation of telomerase in melanoma and co-occur frequently with BRAF alterations. To understand how TERT promoter mutations could be associated with resistance to targeted therapy in melanoma, we conducted translational and in vitro studies. In a cohort of V600E-BRAF-mutated melanoma patients, we showed that the TERT promoter mutation status and TERT expression tended to be associated with response to BRAF and MEK inhibitors. We demonstrated that TERT overexpression in BRAF-mutated melanoma cells reduced sensitivity to BRAF and MEK independently of TERT's telomer maintenance activity. Interestingly, inhibition of TERT reduced growth of BRAF-mutated melanoma including resistant cells. TERT expression in melanoma can therefore be a new biomarker for resistance to MAPK inhibitors as well as a novel therapeutic target.

3.
Int J Oncol ; 56(1): 113-122, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31789391

RESUMO

Our previous study demonstrated that the tyrosine kinase receptor inhibitor sunitinib induces acquired drug resistance in endothelial cells. The present study explored the role of lysosomal sequestration of sunitinib in the acquisition of drug resistance in human microcapillary endothelial HMEC­1 cells. Resistance was induced by escalating concentrations of sunitinib and a shift in IC50 from 12.8 to >20 µM was detected. The results of time­lapse fluorescence microscopy illustrated an instantaneous emergence of fluorescent vesicles in living cells once sunitinib was added. Most of these vesicles emerged in the juxtanuclear area, and exhibited the characteristics of growing autophagosomes and lysosomes. The vesicles were identified as autophagosomes and lysosomes because they co­located with the lysosomal tracers Lyso­ER and Lyso­NIR, and the protein markers lysosomal­associated membrane protein 1 (LAMP­1) and microtubule­associated protein 1A/1B­light chain 3 (LC3). The results of western blotting demonstrated that sunitinib induced upregulation of LAMP­1 and LC3­II, and downregulation of sequestosome 1/p62, indicating the activation of autophagy. Bafilomycin A1, which suppresses lysosomal acidification, completely blocked sunitinib sequestration; however, chloroquine, which blocks lysosomal fusion with autophagosomes, exhibited no effect. Notably, bafilomycin A1 and chloroquine significantly counterbalanced HMEC­1 drug­resistance. These results provided evidence for autophagy­flux­associated sunitinib lysosomal sequestration in endothelial cells, leading to isolation of the drug from the cytoplasm; a key process involved in the development of drug resistance during antiangiogenic therapy. These data supported the notion that inhibiting autophagy may be a potential strategy to prevent drug sequestration and resistance to antiangiogenic therapy.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagossomos/patologia , Autofagia , Resistência a Medicamentos , Células Endoteliais/patologia , Lisossomos/patologia , Sunitinibe/farmacologia , Autofagossomos/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA