RESUMO
Echinococcus granulosus is a cestode parasite which causes cystic echinococcosis disease. Previously we observed that vaccination with E. granulosus antigens from human hydatid cyst fluid (HCF) significantly inhibits colon cancer growth. In the present work, we evaluate the anti-tumor immune response induced by human HCF against LL/2 lung cancer in mice. HCF vaccination protected from tumor growth, both in prophylactic and therapeutic settings, and significantly increased mouse survival compared to control mice. Considering that tumor-associated carbohydrate antigens are expressed in E. granulosus, we oxidized terminal carbohydrates in HCF with sodium periodate. This treatment abrogates the anti-tumor activity induced by HCF vaccination. We found that HCF vaccination-induced IgG antibodies that recognize LL/2 tumor cells by flow cytometry. An antigen-specific immune response is induced with HCF vaccination in the tumor-draining lymph nodes and spleen characterized by the production of IL-5 and, in less extent, IFNÉ£. In the tumor microenvironment, we found that NK1.1 positive cells from HCF-treated mice showed higher expression of CD69 than control mice ones, indicating a higher level of activation. When we depleted these cells by administrating the NK-specific antibody NK1.1, a significantly decreased survival was observed in HCF-induced mice, suggesting that NK1.1+ cells mediate the anti-tumor protection induced by HCF. These results suggest that HCF can evoke an integrated anti-tumor immune response involving both, the innate and adaptive components, and provide novel insights into the understanding of the intricate relationship between HCF vaccination and tumor growth.
Assuntos
Antígenos Ly/imunologia , Equinococose/imunologia , Echinococcus granulosus/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Humanos , Imunidade/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/imunologia , Microambiente Tumoral/imunologiaRESUMO
Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, has anticancer effects mediated, at least in part, by parasite-derived products which inhibit growth of tumor cells. We investigated whether immunity to T. cruzi antigens could induce antitumor activity, using two rat models which reproduce human carcinogenesis: colon cancer induced by 1,2-dimethylhydrazine (DMH), and mammary cancer induced by N-nitroso-N-methylurea (NMU). We found that vaccination with T. cruzi epimastigote lysates strongly inhibits tumor development in both animal models. Rats immunized with T. cruzi antigens induce activation of both CD4(+) and CD8(+) T cells and splenocytes from these animals showed higher cytotoxic responses against tumors as compared to rats receiving adjuvant alone. Tumor-associated immune responses included increasing number of CD11b/c(+) His48(-) MHC II(+) cells corresponding to macrophages and/or dendritic cells, which exhibited augmented NADPH-oxidase activity. We also found that T. cruzi lysate vaccination developed antibodies specific for colon and mammary rat cancer cells, which were capable of mediating antibody-dependent cellular cytotoxicity (ADCC) in vitro. Anti-T. cruzi antibodies cross-reacted with human colon and breast cancer cell lines and recognized 41/60 (68%) colon cancer and 38/63 (60%) breast cancer samples in a series of 123 human tumors. Our results suggest that T. cruzi antigens can evoke an integrated antitumor response involving both the cellular and humoral components of the immune response and provide novel insights into the understanding of the intricate relationship between parasite infection and tumor growth.
Assuntos
Antígenos de Protozoários/imunologia , Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Neoplasias do Colo/imunologia , Trypanosoma cruzi/imunologia , 1,2-Dimetilidrazina/toxicidade , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias da Mama/induzido quimicamente , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Neoplasias do Colo/induzido quimicamente , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Metilnitrosoureia/toxicidade , Ratos , Ratos WistarRESUMO
This study evaluates the antitumor immune response induced by human hydatic cyst fluid (HCF) in an animal model of colon carcinoma. We found that anti-HCF antibodies were able to identify cell surface and intracellular antigens in CT26 colon cancer cells. In prophylactic tumor challenge experiments, HCF vaccination was found to be protective against tumor formation for 40% of the mice (P = 0.01). In the therapeutic setting, HCF vaccination induced tumor regression in 40% of vaccinated mice (P = 0.05). This vaccination generated memory immune responses that protected surviving mice from tumor rechallenge, implicating the development of an adaptive immune response in this process. We performed a proteomic analysis of CT26 antigens recognized by anti-HCF antibodies to analyze the immune cross-reactivity between E. granulosus (HCF) and CT26 colon cancer cells. We identified two proteins: mortalin and creatine kinase M-type. Interestingly, CT26 mortalin displays 60% homology with E. granulosus hsp70. In conclusion, our data demonstrate the capacity of HCF vaccination to induce antitumor immunity which protects from tumor growth in an animal model. This new antitumor strategy could open new horizons in the development of highly immunogenic anticancer vaccines.
Assuntos
Antígenos de Helmintos/uso terapêutico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Neoplasias do Colo/prevenção & controle , Equinococose/imunologia , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Creatina Quinase Forma MM/imunologia , Reações Cruzadas , Echinococcus granulosus/imunologia , Proteínas de Choque Térmico HSP70/imunologia , Humanos , Camundongos , ProteômicaRESUMO
Colorectal carcinoma (CRC) is the second leading cause of cancer mortality worldwide. O-glycosylated mucins at the cell surface of colonic mucosa exhibit alterations in cancer and are involved in fundamental biological processes, including invasion and metastasis. Certain members of the GalNAc-transferase family may be responsible for these changes and are being investigated as novel biomarkers of cancer. In the present study the prognostic significance of GalNAc-T6 was investigated in patients with CRC patients. GalNAc-T6 expression was observed in all three colon cancer cell lines analyzed by reverse transcription-polymerase chain reaction, immunofluorescence and flow cytometry. A cohort of 81 colon cancer specimens was analyzed by immunohistochemical staining using MAb T6.3. It was demonstrated that GalNAc-T6 was expressed in 35/81 (43%) cases of colon cancer but not in the normal colonic mucosa. No association was observed with the clinical-pathologic parameters. However, patients expressing GalNAc-T6 had a significantly increased overall survival (median, 58 months; P<0.001) compared with GalNAc-T6 negative patients, especially those with advanced disease. These results suggest that GalNAc-T6 expression predicts an improved outcome in patients with CRC. The molecular mechanism underlying the less aggressive behavior of colon cancer cells expressing GalNAc-T6 remains to be elucidated.
RESUMO
The simple mucin-type truncated O-glycans Tn (GalNAc-O-Ser/Thr) and sialyl-Tn (STn) antigens are useful diagnostic markers for human colon cancer. We herein report the characterization of 1,2-dimethylhidrazine (DMH)-induced colon cancer in rats as a new model for the study of aberrant O-glycosylation products during carcinogenesis. Evaluated by immunohistochemistry, both anti-Tn and anti-STn MAbs revealed no staining of normal colonic mucosa. On the contrary, Tn and STn were expressed by the first lesions detected following carcinogen administration (aberrant crypt foci), observing the most intense and uniform pattern in crypts with severe dysplasia. Adenocarcinomas with non-secreting components showed moderately and strong stain, but mucin-secreting carcinomas were mildly stained. The biochemical characterization of soluble Tn glycoproteins from ascitic fluids of rats with colon cancer revealed that Tn is bearing high molecular weight glycoproteins (containing sialic acid and/or GlcNAc and GalNAc), which migrated as two major components (one of approximately 220 kDa and other>500 kDa). Evaluated by CsCl gradient ultracentrifugation and perchloric acid precipitation, it was shown that Tn is carried for mucins. These results indicate that Tn and STn are pre-cancerous biomarkers in colon of rats treated with DMH. This model of rat colon cancer could be useful to study in vivo the temporal sequence of molecular events responsible for the deregulation of O-glycosylation pathways during colon carcinogenesis, and could contribute to improve the evaluation of diagnostic and therapeutic strategies based on the utilization of Tn and STn antigens.
Assuntos
Antígenos Glicosídicos Associados a Tumores/análise , Biomarcadores Tumorais/análise , Neoplasias do Colo/patologia , Mucinas/análise , Lesões Pré-Cancerosas/patologia , Animais , Colo/química , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Diagnóstico Diferencial , Dimetilidrazinas , Feminino , Glicoproteínas/metabolismo , Imuno-Histoquímica , Lesões Pré-Cancerosas/metabolismo , Ratos , Ratos WistarRESUMO
Galectin-3 (Gal-3) is a multifunctional protein that plays different roles in cancer biology. To better understand the role of Gal-3 and its ligands during colon carcinogenesis, we studied its expression in tumors induced in rats treated with 1,2-dimethylhydrazine (DMH) and in human tissues. Normal colon from untreated rats showed no staining using two specific monoclonal antibodies. In contrast, morphologically normal colon from DMH-treated rats and dysplastic aberrant crypt foci were strongly stained, indicating that increased Gal-3 expression is an early event during the neoplastic transformation in colon cells. Gal-3 was weakly expressed in adenocarcinomas. Overall, the Gal-3 expression pattern observed in the DMH rat model closely resembles that displayed by human colon stained with the same antibodies. We also found that Gal-3 phosphorylation diminishes in serines while increasing in tyrosines during rat colon carcinogenesis. Finally, we showed that Gal-3-ligands expression is strikingly similar in rat and human malignant colon and in non-malignant tissues. In conclusion, the DMH-induced rat colon cancer model displays expression patterns of Gal-3 and its ligands very similar to those observed in human samples. This animal model should contribute to clarifying the role of Gal-3 in colon carcinogenesis and also to finding effective preventive cancer agents based on Gal-3 targeting.