Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncologist ; 21(11): 1315-1325, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27566247

RESUMO

BACKGROUND: The frequency with which targeted tumor sequencing results will lead to implemented change in care is unclear. Prospective assessment of the feasibility and limitations of using genomic sequencing is critically important. METHODS: A prospective clinical study was conducted on 100 patients with diverse-histology, rare, or poor-prognosis cancers to evaluate the clinical actionability of a Clinical Laboratory Improvement Amendments (CLIA)-certified, comprehensive genomic profiling assay (FoundationOne), using formalin-fixed, paraffin-embedded tumors. The primary objectives were to assess utility, feasibility, and limitations of genomic sequencing for genomically guided therapy or other clinical purpose in the setting of a multidisciplinary molecular tumor board. RESULTS: Of the tumors from the 92 patients with sufficient tissue, 88 (96%) had at least one genomic alteration (average 3.6, range 0-10). Commonly altered pathways included p53 (46%), RAS/RAF/MAPK (rat sarcoma; rapidly accelerated fibrosarcoma; mitogen-activated protein kinase) (45%), receptor tyrosine kinases/ligand (44%), PI3K/AKT/mTOR (phosphatidylinositol-4,5-bisphosphate 3-kinase; protein kinase B; mammalian target of rapamycin) (35%), transcription factors/regulators (31%), and cell cycle regulators (30%). Many low frequency but potentially actionable alterations were identified in diverse histologies. Use of comprehensive profiling led to implementable clinical action in 35% of tumors with genomic alterations, including genomically guided therapy, diagnostic modification, and trigger for germline genetic testing. CONCLUSION: Use of targeted next-generation sequencing in the setting of an institutional molecular tumor board led to implementable clinical action in more than one third of patients with rare and poor-prognosis cancers. Major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access. Early and serial sequencing in the clinical course and expanded access to genomically guided early-phase clinical trials and targeted agents may increase actionability. IMPLICATIONS FOR PRACTICE: Identification of key factors that facilitate use of genomic tumor testing results and implementation of genomically guided therapy may lead to enhanced benefit for patients with rare or difficult to treat cancers. Clinical use of a targeted next-generation sequencing assay in the setting of an institutional molecular tumor board led to implementable clinical action in over one third of patients with rare and poor prognosis cancers. The major barriers to implementation of genomically guided therapy were clinical status of the patient and drug access both on trial and off label. Approaches to increase actionability include early and serial sequencing in the clinical course and expanded access to genomically guided early phase clinical trials and targeted agents.

2.
Mol Pharmacol ; 88(4): 720-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219913

RESUMO

NAD(+) kinase (NADK) is the only known cytosolic enzyme that converts NAD(+) to NADP(+), which is subsequently reduced to NADPH. The demand for NADPH in cancer cells is elevated as reducing equivalents are required for the high levels of nucleotide, protein, and fatty acid synthesis found in proliferating cells as well as for neutralizing high levels of reactive oxygen species (ROS). We determined whether inhibition of NADK activity is a valid anticancer strategy alone and in combination with chemotherapeutic drugs known to induce ROS. In vitro and in vivo inhibition of NADK with either small-hairpin RNA or thionicotinamide inhibited proliferation. Thionicotinamide enhanced the ROS produced by several chemotherapeutic drugs and produced synergistic cell kill. NADK inhibitors alone or in combination with drugs that increase ROS-mediated stress may represent an efficacious antitumor combination and should be explored further.


Assuntos
Antineoplásicos/administração & dosagem , Citosol/metabolismo , NADP/antagonistas & inibidores , Niacinamida/análogos & derivados , Estresse Oxidativo/fisiologia , Animais , Citosol/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NADP/metabolismo , Niacinamida/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Biomed Chromatogr ; 29(11): 1708-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25944179

RESUMO

ZMC1 {azetidinecarbothioic acid, [1-(2-pyridinyl) ethylidene] hydrazide} is a lead compound being developed as one of the first mutant p53 targeted anti-cancer drugs. Establishing a precise quantitative method is an integral component of this development. The aim of this study was to develop a sensitive LC/MS/MS assay suitable for assessing purity, stability and preclinical pharmacokinetic studies of ZMC1. Acetonitrile protein precipitation extraction was chosen for plasma sample preparation with satisfactory recovery (84.2-92.8%) for ZMC1. Chromatographic separation was achieved on an Xterra C18 column (50 × 4.6 mm, 3.5 µm) using a gradient elution with mobile phase of 0.1% formic acid in water and acetonitrile. ZMC1 and internal standard 2-amino-6-bromobenzothiazole were identified using selected-ion monitoring mode at m/z 235.2/178.2 and m/z 231.0/150.0 at retention times of 5.2 and 6.3 min, respectively. The method was validated with a linearity range of 3.9-500.0 ng/mL in human plasma and showed acceptable reproducibility with intra- and interday precisions <5.9 and 10.5%, and accuracy within ±5.4% of nominal values. This analytical method together with basic stability data in plasma and plasma binding experiments provides a reliable protocol for the study of ZMC1 pharmacokinetics. This will greatly facilitate the pre-clinical development of this novel anti-cancer drug.


Assuntos
Antineoplásicos/sangue , Cromatografia Líquida/métodos , Piridinas/sangue , Espectrometria de Massas em Tandem/métodos , Humanos , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes
4.
Prostate ; 74(2): 187-200, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24154958

RESUMO

BACKGROUND: Prostate tumor-initiating cells (TICs) have intrinsic resistance to current therapies. TICs are commonly isolated by cell sorting or dye exclusion, however, isolating TICs from limited primary prostate cancer (PCa) tissues is inherently inefficient. We adapted the collagen adherence feature to develop a combined immunophenotypic and time-of-adherence assay to identify human prostate TICs. METHODS: PCa cells from multiple cell lines and primary tissues were allowed to adhere to several matrix molecules, and fractions of adherent cells were examined for their TIC properties. RESULTS: Collagen I rapidly-adherent PCa cells have significantly higher clonogenic, migration, and invasion abilities, and initiated more tumor xenografts in mice when compared to slowly-adherent and no-adherent cells. To determine the relative frequency of TICs among PCa cell lines and primary PCa cells, we utilized zebrafish xenografts to define the tumor initiation potential of serial dilutions of rapidly-adherent α2ß1(hi) /CD44(hi) cells compared to non-adherent cells with α2ß1(low) /CD44(low) phenotype. Tumor initiation from rapidly-adherent α2ß1(hi) /CD44(hi) TICs harboring the TMPRSS2:ERG fusion generated xenografts comprising of PCa cells expressing Erg, AMACR, and PSA. Moreover, PCa-cell dissemination was consistently observed in the immune-permissive zebrafish microenvironment from as-few-as 3 rapidly-adherent α2ß1(hi) /CD44(hi) cells. In zebrafish xenografts, self-renewing prostate TICs comprise 0.02-0.9% of PC3 cells, 0.3-1.3% of DU145 cells, and 0.22-14.3% of primary prostate adenocarcinomas. CONCLUSION: Zebrafish PCa xenografts were used to determine that the frequency of prostate TICs varies among PCa cell lines and primary PCa tissues. These data support a paradigm of utilizing zebrafish xenografts to evaluate novel therapies targeting TICs in prostate cancer.


Assuntos
Adenocarcinoma/patologia , Adesão Celular/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adenocarcinoma/metabolismo , Animais , Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Racemases e Epimerases/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG , Peixe-Zebra
5.
Oncologist ; 19(7): 760-5, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24928612

RESUMO

Sixty years ago, 6-thioguanine (6-TG) was introduced into the clinic. We suggest its full potential in therapy may not have been reached. In this paper, we contrast 6-TG and the more widely used 6-mercaptopurine; discuss 6-TG metabolism, pharmacokinetics, dosage and schedule; and summarize many of the early studies that have shown infrequent but nevertheless positive results with 6-TG treatment of cancers. We also consider studies that suggest that combinations of 6-TG with other agents may enhance antitumor effects. Although not yet tested in man, 6-TG has recently been proposed to treat a wide variety of cancers with a high frequency of homozygous deletion of the gene for methylthioadenosine phosphorylase (MTAP), often codeleted with the adjacent tumor suppressor CDKN2A (p16). Among the cancers with a high frequency of MTAP deficiency are leukemias, lymphomas, mesothelioma, melanoma, biliary tract cancer, glioblastoma, osteosarcoma, soft tissue sarcoma, neuroendocrine tumors, and lung, pancreatic, and squamous cell carcinomas. The method involves pretreatment with the naturally occurring nucleoside methylthioadenosine (MTA), the substrate for the enzyme MTAP. MTA pretreatment protects normal host tissues, but not MTAP-deficient cancers, from 6-TG toxicity and permits administration of doses of 6-TG that are much higher than can now be safely administered. The combination of MTA/6-TG has produced substantial shrinkage or slowing of growth in two different xenograft human tumor models: lymphoblastic leukemia and metastatic prostate carcinoma with neuroendocrine features. Further development and a clinical trial of the proposed MTA/6-TG treatment of MTAP-deficient cancers seem warranted.


Assuntos
Neoplasias/tratamento farmacológico , Tioguanina/uso terapêutico , Animais , Humanos
6.
Mol Pharmacol ; 83(2): 339-53, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23197646

RESUMO

Dihydrofolate reductase (DHFR), because of its essential role in DNA synthesis, has been targeted for the treatment of a wide variety of human diseases, including cancer, autoimmune diseases, and infectious diseases. Methotrexate (MTX), a tight binding inhibitor of DHFR, is one of the most widely used drugs in cancer treatment and is especially effective in the treatment of acute lymphocytic leukemia, non-Hodgkin's lymphoma, and osteosarcoma. Limitations to its use in cancer include natural resistance and acquired resistance due to decreased cellular uptake and decreased retention due to impaired polyglutamylate formation and toxicity at higher doses. Here, we describe a novel mechanism to induce DHFR degradation through cofactor depletion in neoplastic cells by inhibition of NAD kinase, the only enzyme responsible for generating NADP, which is rapidly converted to NADPH by dehydrogenases/reductases. We identified an inhibitor of NAD kinase, thionicotinamide adenine dinucleotide phosphate (NADPS), which led to accelerated degradation of DHFR and to inhibition of cancer cell growth. Of importance, combination treatment of NADPS with MTX displayed significant synergy in a metastatic colon cancer cell line and was effective in a MTX-transport resistant leukemic cell line. We suggest that NAD kinase is a valid target for further inhibitor development for cancer treatment.


Assuntos
NADP/análogos & derivados , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Linhagem Celular Tumoral , Meia-Vida , Humanos , Metotrexato/farmacologia , NADP/metabolismo , NADP/farmacologia , Proteólise/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Biomed Chromatogr ; 26(5): 650-4, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21932382

RESUMO

2-Deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate-boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45 min. The analytes were separated on a YMC ODS C18 reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425 nm. The 2-DG calibration curves were linear over the range of 0.63-300 µg/mL with a limit of detection of 0.5 µg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8%, and the accuracy ranged from 86.8 to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Desoxiglucose/sangue , Antimetabólitos Antineoplásicos/sangue , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/uso terapêutico , Desoxiglucose/química , Desoxiglucose/farmacocinética , Desoxiglucose/uso terapêutico , Estabilidade de Medicamentos , Corantes Fluorescentes , Humanos , Limite de Detecção , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Pharmacol Ther ; 226: 107864, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33894275

RESUMO

Cancer cells require increased levels of NADPH for increased nucleotide synthesis and for protection from ROS. Recent studies show that increased NADPH is generated in several ways. Activated AKT phosphorylates NAD kinase (NADK), increasing its activity. NADP formed, is rapidly converted to NADPH by glucose 6-phosphate dehydrogenase and malic enzymes, overexpressed in tumor cells with mutant p53. Calmodulin, overexpressed in some cancers, also increases NADK activity. Also, in IDH1/2 mutant cancer, NADPH serves as the cofactor to generate D-2 hydroxyglutarate, an oncometabolite. The requirement of cancer cells for elevated levels of NADPH provides an opportunity to target its synthesis for cancer treatment.


Assuntos
NADP , Neoplasias , Humanos , NADP/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
9.
Cancers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652640

RESUMO

BACKGROUND: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. METHODS: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. RESULTS: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. CONCLUSIONS: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.

10.
11.
Clin Cancer Res ; 15(4): 1232-40, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19174488

RESUMO

PURPOSE: Small-cell lung cancers (SCLC) are defective in many regulatory mechanisms that control cell cycle progression, i.e., functional retinoblastoma protein (pRb). Flavopiridol inhibits proliferation and induces apoptosis in SCLC cell lines. We hypothesized that the sequence flavopiridol followed by doxorubicin would be synergistic in pRb-deficient SCLC cells. EXPERIMENTAL DESIGN: A H69 pRb-deficient SCLC cell line, H865, with functional pRb and H865 pRb small interfering RNA (siRNA) knockdown cells were used for in vitro and in vivo experiments. The in vivo efficiencies of various sequential combinations were tested using nude/nude athymic mice and human SCLC xenograft models. RESULTS: Flavopiridol then doxorubicin sequential treatment was synergistic in the pRB-negative H69 cell line. By knocking down pRb with specific siRNA, H865 clones with complete pRb knockdown became sensitive to flavopiridol and doxorubicin combinations. pRb-deficient SCLC cell lines were highly sensitive to flavopiridol-induced apoptosis. pRb-positive H865 cells arrested in G0-G1 with flavopiridol exposure, whereas doxorubicin and all flavopiridol/doxorubicin combinations caused a G2-M block. In contrast, pRb-negative SCLC cells did not arrest in G0-G1 with flavopiridol exposure. Flavopiridol treatment alone did not have an in vivo antitumor effect, but sequential flavopiridol followed by doxorubicin treatment provided tumor growth control and a survival advantage in Rb-negative xenograft models, compared with the other sequential treatments. CONCLUSIONS: Flavopiridol and doxorubicin sequential treatment induces potent in vitro and in vivo synergism in pRb-negative SCLC cells and should be clinically tested in tumors lacking functional pRB.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Flavonoides/administração & dosagem , Genes do Retinoblastoma/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Piperidinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biomolecules ; 10(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111066

RESUMO

Actively proliferating cancer cells require sufficient amount of NADH and NADPH for biogenesis and to protect cells from the detrimental effect of reactive oxygen species. As both normal and cancer cells share the same NAD biosynthetic and metabolic pathways, selectively lowering levels of NAD(H) and NADPH would be a promising strategy for cancer treatment. Targeting nicotinamide phosphoribosyltransferase (NAMPT), a rate limiting enzyme of the NAD salvage pathway, affects the NAD and NADPH pool. Similarly, lowering NADPH by mutant isocitrate dehydrogenase 1/2 (IDH1/2) which produces D-2-hydroxyglutarate (D-2HG), an oncometabolite that downregulates nicotinate phosphoribosyltransferase (NAPRT) via hypermethylation on the promoter region, results in epigenetic regulation. NADPH is used to generate D-2HG, and is also needed to protect dihydrofolate reductase, the target for methotrexate, from degradation. NAD and NADPH pools in various cancer types are regulated by several metabolic enzymes, including methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, and aldehyde dehydrogenase. Thus, targeting NAD and NADPH synthesis under special circumstances is a novel approach to treat some cancers. This article provides the rationale for targeting the key enzymes that maintain the NAD/NADPH pool, and reviews preclinical studies of targeting these enzymes in cancers.


Assuntos
Antineoplásicos/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Descoberta de Drogas , NADP/metabolismo , NAD/metabolismo , Neoplasias/enzimologia , Animais , Inibidores Enzimáticos/farmacologia , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/metabolismo
13.
Sci Rep ; 10(1): 3015, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080205

RESUMO

The rapid qualitative assessment of surface markers on cancer cells can allow for point-of-care prediction of patient response to various cancer drugs. Preclinical studies targeting cells with an antibody to "activated" matriptase conjugated to a potent toxin show promise as a selective treatment for a variety of solid tumors. In this paper, we implemented a novel technique for electrical detection of proteins on surfaces of cancer cells using multi-frequency microfluidic impedance cytometry. The biosensor, consists of two gold microelectrodes on a glass substrate embedded in a PDMS microfluidic channel, is used in conjugation with immuno-magnetic separation of cancer cells, and is capable of differentiating between bare magnetic beads, cancer cells and bead-cell aggregates based on their various impedance and frequency responses. We demonstrated proof-of-concept based on detection of "activated" matriptase proteins on the surface of cultured Mantle cells.


Assuntos
Biomarcadores/metabolismo , Impedância Elétrica , Citometria de Fluxo , Separação Imunomagnética , Terapia de Alvo Molecular , Linhagem Celular Tumoral , Eletrodos , Humanos , Microtecnologia , Modelos Teóricos , Serina Endopeptidases/metabolismo , Razão Sinal-Ruído
14.
Mol Pharmacol ; 76(4): 723-33, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570950

RESUMO

We have observed that rodent cell lines (mouse, hamster) contain approximately 10 times the levels of dihydrofolate reductase as human cell lines, yet the sensitivity to methotrexate (ED(50)), the folate antagonist that targets this enzyme, is similar. Our previous studies showed that dihydrofolate reductase protein levels increased after methotrexate exposure, and we proposed that this increase was due to the relief of feedback inhibition of translation as a consequence of methotrexate binding to dihydrofolate reductase. In the current report, we show that unlike what was observed in human cells, dihydrofolate reductase (DHFR) levels do not increase in hamster cells after methotrexate exposure. We provide evidence to show that although there are differences in the putative mRNA structure between hamster and human mRNA in the dihydrofolate reductase binding region previously identified, "hamsterization" of this region in human dihydrofolate reductase mRNA did not change the level of the enzyme or its induction by methotrexate. Further experiments showed that human dihydrofolate reductase is a promiscuous enzyme and that it is the difference between the hamster and human dihydrofolate reductase protein, rather than the DHFR mRNA, that determines the response to methotrexate exposure. We also present evidence to suggest that the translational up-regulation of dihydrofolate reductase by methotrexate in tumor cells is an adaptive mechanism that decreases sensitivity to this drug.


Assuntos
Regulação Enzimológica da Expressão Gênica , Biossíntese de Proteínas , Tetra-Hidrofolato Desidrogenase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Células CHO , Cricetinae , Cricetulus , Primers do DNA , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tetra-Hidrofolato Desidrogenase/química
15.
Mol Imaging ; 8(6): 305-18, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20003889

RESUMO

Bicistronic vectors are useful tools for exogenous expression of two gene products from a single promoter element; however, reduced expression of protein from the second cistron compared with the first cistron is a common limitation to this approach. To overcome this limitation, we explored use of dihydrofolate reductase (DHFR) complementary DNA encoded in bicistronic vectors to induce a second protein of interest by methotrexate (MTX) treatment. Previous studies have demonstrated that levels of DHFR protein and DHFR fusion protein can be induced translationally following MTX treatment of cells. We demonstrated that in response to MTX treatment, DHFR partner protein in a bicistronic construct is induced for longer periods of time when compared with endogenous DHFR and DHFR fusion protein, in vitro and in vivo. Using rapamycin pretreatment followed by MTX treatment, we also devised a strategy to modulate levels of two proteins expressed from a bicistronic construct in a cap-independent manner. To our knowledge, this is the first report demonstrating that levels of proteins in DHFR-based bicistronic constructs can be induced and modulated using MTX and rapamycin treatment.


Assuntos
Vetores Genéticos/genética , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/biossíntese , Tetra-Hidrofolato Desidrogenase/genética , Animais , Linhagem Celular Tumoral , Clonagem Molecular , DNA Complementar/genética , Genes Reporter , Humanos , Metotrexato/farmacologia , Camundongos , Modelos Genéticos , Células NIH 3T3 , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Sirolimo/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Imagem Corporal Total
16.
Methods Mol Biol ; 542: 661-704, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19565927

RESUMO

Dose-limiting toxicity of chemotherapeutic agents, i.e., myelosuppression, can limit their effectiveness. The transfer and expression of drug-resistance genes might decrease the risks associated with acute hematopoietic toxicity. Protection of hematopoietic stem/progenitor cells by transfer of drug-resistance genes provides the possibility of intensification or escalation of antitumor drug doses and consequently an improved therapeutic index. This chapter reviews drug-resistance gene transfer strategies for either myeloprotection or therapeutic gene selection. Selecting candidate drug-resistance gene(s), gene transfer methodology, evaluating the safety and the efficiency of the treatment strategy, relevant in vivo models, and oncoretroviral transduction of human hematopoietic stem/progenitor cells under clinically applicable conditions are described.


Assuntos
Citoproteção/genética , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Transferência de Genes , Animais , Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Reação em Cadeia da Polimerase , Transdução Genética
17.
Methods Mol Biol ; 1866: 1-12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30725403

RESUMO

Cancer cells require exogenous methionine for survival and therefore methionine restriction is a promising avenue for treatment. The basis for methionine dependence in cancer cells is still not entirely clear. While the lack of the methionine salvage enzyme methylthioadenosine phosphorylase (MTAP) is associated with methionine auxotrophy in cancer cells, there are other causes for tumors to require exogenous methionine. Restricting methionine by diet or by enzyme depletion, alone or in combination with certain chemotherapeutics, is a promising antitumor strategy.


Assuntos
Bioquímica/métodos , Liases de Carbono-Enxofre/metabolismo , Metionina/deficiência , Neoplasias/enzimologia , Neoplasias/patologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Dieta , Feminino , Masculino , Camundongos Nus , Camundongos SCID , Neoplasias/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Clin Lymphoma Myeloma Leuk ; 19(6): e307-e311, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30926391

RESUMO

Lenalidomide has modest single-agent activity comparable with other newer drugs in recurrent diffuse large B cell lymphoma with response rates between 19% and 28%. Retrospective series and 1 prospective study suggest that clinically significant responses were predominantly limited to patients with activated B cell (ABC) lymphoma, a finding in agreement with lenalidomide's potent inhibition of nuclear factor κB, the key driver of ABC lymphomas. Recently completed trials will determine whether the additional use of lenalidomide with R/CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) enhances survival compared with R/CHOP alone and whether this activity is limited to ABC lymphomas. Lenalidomide also appears to have activity in the maintenance setting regardless of cell of origin and might play an important role in patients with recurrent disease who are not transplantation candidates. Similarly, because of the ability of lenalidomide to cross the blood-brain barrier, it needs to be further explored in patients with high risk for central nervous system spread. The results of lenalidomide combination studies with chemotherapy and with checkpoint inhibitors are eagerly awaited.


Assuntos
Antineoplásicos/uso terapêutico , Lenalidomida/uso terapêutico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Feminino , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/etiologia , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Prognóstico , Resultado do Tratamento
19.
Front Oncol ; 9: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024856

RESUMO

Matriptase is a transmembrane serine protease, synthesized as an inactive single-chain zymogen on the endoplasmic reticulum and transported to the plasma membrane. Matriptase is activated in different epithelial and some B-cell malignancies and changes its conformation and activity is inhibited mainly by its endogenous inhibitor HAI-1. Activated matriptase plays a key role in tumor initiation as well as tumor progression, including invasiveness, and metastasis. To target the anti-mitotic toxin (monomethyl auristatin-E) to activated matriptase, a novel antibody to activated matriptase was conjugated with this toxin via a valine-citrulline-PABA linker. In a previous study, this antibody-toxin conjugate was found to be effective against triple negative breast cancer cell lines and xenografts, alone, or in combination with cisplatin (1). In this study, we examined the anti-tumor effect of the antibody toxin conjugate (ADC) against activated matriptase positive mantle cell lymphoma cell lines (JeKo-1, Maver, Mino, and Z138). This ADC was cytotoxic to these cell lines with IC50s between 5 and 14 µg/mL. The ADC also showed a dose dependent anti-tumor effect on the JeKo-1 xenograft in mice without toxicity.

20.
Microsyst Nanoeng ; 5: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645995

RESUMO

We present a novel method to rapidly assess drug efficacy in targeted cancer therapy, where antineoplastic agents are conjugated to antibodies targeting surface markers on tumor cells. We have fabricated and characterized a device capable of rapidly assessing tumor cell sensitivity to drugs using multifrequency impedance spectroscopy in combination with supervised machine learning for enhanced classification accuracy. Currently commercially available devices for the automated analysis of cell viability are based on staining, which fundamentally limits the subsequent characterization of these cells as well as downstream molecular analysis. Our approach requires as little as 20 µL of volume and avoids staining allowing for further downstream molecular analysis. To the best of our knowledge, this manuscript presents the first comprehensive attempt to using high-dimensional data and supervised machine learning, particularly phase change spectra obtained from multi-frequency impedance cytometry as features for the support vector machine classifier, to assess viability of cells without staining or labelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA