Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 203(2): 71-80, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545204

RESUMO

Baculovirus-insect cell expression system has become one of the most widely used eukaryotic expression systems for heterologous protein production in many laboratories. The availability of robust insect cell lines, serum-free media, a range of vectors and commercially-packaged kits have supported the demand for maximizing the exploitation of the baculovirus-insect cell expression system. Naturally, this resulted in varied strategies adopted by different laboratories to optimize protein production. Most laboratories have preference in using either the E. coli transposition-based recombination bacmid technology (e.g. Bac-to-Bac®) or homologous recombination transfection within insect cells (e.g. flashBAC™). Limited data is presented in the literature to benchmark the protocols used for these baculovirus vectors to facilitate the selection of a system for optimal production of target proteins. Taking advantage of the Protein Production and Purification Partnership in Europe (P4EU) scientific network, a benchmarking initiative was designed to compare the diverse protocols established in thirteen individual laboratories. This benchmarking initiative compared the expression of four selected intracellular proteins (mouse Dicer-2, 204 kDa; human ABL1 wildtype, 126 kDa; human FMRP, 68 kDa; viral vNS1-H1, 76 kDa). Here, we present the expression and purification results on these proteins and highlight the significant differences in expression yields obtained using different commercially-packaged baculovirus vectors. The highest expression level for difficult-to-express intracellular protein candidates were observed with the EmBacY baculovirus vector system.


Assuntos
Baculoviridae/genética , Vetores Genéticos/genética , Proteínas Recombinantes/metabolismo , Animais , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Recombinantes/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Células Sf9
2.
Biochem Biophys Res Commun ; 476(2): 102-7, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27178209

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in the regulation of metabolic activity in cancer and immune cells, and affects whole-body metabolism by regulating ghrelin-signalling in the hypothalamus. This has led to efforts to develop specific CaMKK2 inhibitors, and STO-609 is the standardly used CaMKK2 inhibitor to date. We have developed a novel fluorescence-based assay by exploiting the intrinsic fluorescence properties of STO-609. Here, we report an in vitro binding constant of KD ∼17 nM between STO-609 and purified CaMKK2 or CaMKK2:Calmodulin complex. Whereas high concentrations of ATP were able to displace STO-609 from the kinase, GTP was unable to achieve this confirming the specificity of this association. Recent structural studies on the kinase domain of CaMKK2 had implicated a number of amino acids involved in the binding of STO-609. Our fluorescent assay enabled us to confirm that Phe(267) is critically important for this association since mutation of this residue to a glycine abolished the binding of STO-609. An ATP replacement assay, as well as the mutation of the 'gatekeeper' amino acid Phe(267)Gly, confirmed the specificity of the assay and once more confirmed the strong binding of STO-609 to the kinase. In further characterising the purified kinase and kinase-calmodulin complex we identified a number of phosphorylation sites some of which corroborated previously reported CaMKK2 phosphorylation and some of which, particularly in the activation segment, were novel phosphorylation events. In conclusion, the intrinsic fluorescent properties of STO-609 provide a great opportunity to utilise this drug to label the ATP-binding pocket and probe the impact of mutations and other regulatory modifications and interactions on the pocket. It is however clear that the number of phosphorylation sites on CaMKK2 will pose a challenge in studying the impact of phosphorylation on the pocket unless the field can develop approaches to control the spectrum of modifications that occur during recombinant protein expression in Escherichia coli.


Assuntos
Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Corantes Fluorescentes/farmacologia , Naftalimidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Benzimidazóis/metabolismo , Sítios de Ligação , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Calmodulina/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Corantes Fluorescentes/metabolismo , Humanos , Naftalimidas/metabolismo , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência/métodos
3.
BMC Biotechnol ; 13: 12, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23410102

RESUMO

BACKGROUND: Expression and purification of correctly folded proteins typically require screening of different parameters such as protein variants, solubility enhancing tags or expression hosts. Parallel vector series that cover all variations are available, but not without compromise. We have established a fast, efficient and absolutely background free cloning approach that can be applied to any selected vector. RESULTS: Here we describe a method to tailor selected expression vectors for parallel Sequence and Ligation Independent Cloning. SLIC cloning enables precise and sequence independent engineering and is based on joining vector and insert with 15-25 bp homologies on both DNA ends by homologous recombination. We modified expression vectors based on pET, pFastBac and pTT backbones for parallel PCR-based cloning and screening in E.coli, insect cells and HEK293E cells, respectively. We introduced the toxic ccdB gene under control of a strong constitutive promoter for counterselection of insert less vector. In contrast to DpnI treatment commonly used to reduce vector background, ccdB used in our vector series is 100% efficient in killing parental vector carrying cells and reduces vector background to zero. In addition, the 3' end of ccdB functions as a primer binding site common to all vectors. The second shared primer binding site is provided by a HRV 3C protease cleavage site located downstream of purification and solubility enhancing tags for tag removal. We have so far generated more than 30 different parallel expression vectors, and successfully cloned and expressed more than 250 genes with this vector series. There is no size restriction for gene insertion, clone efficiency is > 95% with clone numbers up to 200. The procedure is simple, fast, efficient and cost-effective. All expression vectors showed efficient expression of eGFP and different target proteins requested to be produced and purified at our Core Facility services. CONCLUSION: This new expression vector series allows efficient and cost-effective parallel cloning and thus screening of different protein constructs, tags and expression hosts.


Assuntos
Clonagem Molecular , Vetores Genéticos/metabolismo , Proteases Virais 3C , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Baculoviridae/genética , Sequência de Bases , Sítios de Ligação , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Primers do DNA/química , Primers do DNA/metabolismo , Escherichia coli/metabolismo , Vetores Genéticos/genética , Células HEK293 , Recombinação Homóloga , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Células Sf9 , Spodoptera , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Appl Microbiol Biotechnol ; 97(15): 6779-91, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23160981

RESUMO

The Escherichia coli host system is an advantageous choice for simple and inexpensive recombinant protein production but it still presents bottlenecks at expressing soluble proteins from other organisms. Several efforts have been taken to overcome E. coli limitations, including the use of fusion partners that improve protein expression and solubility. New fusion technologies are emerging to complement the traditional solutions. This work evaluates two novel fusion partners, the Fh8 tag (8 kDa) and the H tag (1 kDa), as solubility enhancing tags in E. coli and their comparison to commonly used fusion partners. A broad range comparison was conducted in a small-scale screening and subsequently scaled-up. Six difficult-to-express target proteins (RVS167, SPO14, YPK1, YPK2, Frutalin and CP12) were fused to eight fusion tags (His, Trx, GST, MBP, NusA, SUMO, H and Fh8). The resulting protein expression and solubility levels were evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis before and after protein purification and after tag removal. The Fh8 partner improved protein expression and solubility as the well-known Trx, NusA or MBP fusion partners. The H partner did not function as a solubility tag. Cleaved proteins from Fh8 fusions were soluble and obtained in similar or higher amounts than proteins from the cleavage of other partners as Trx, NusA or MBP. The Fh8 fusion tag therefore acts as an effective solubility enhancer, and its low molecular weight potentially gives it an advantage over larger solubility tags by offering a more reliable assessment of the target protein solubility when expressed as a fusion protein.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fusão Gênica , Sequência de Bases , Clonagem Molecular , Primers do DNA , Reação em Cadeia da Polimerase , Solubilidade
5.
BMC Microbiol ; 12: 272, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171228

RESUMO

BACKGROUND: The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt.) salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. RESULTS: The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs) can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY). From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus), CheD (the hub of the subnetwork), two CheC complexes and the receptor methylesterase CheB. CONCLUSIONS: Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.


Assuntos
Quimiotaxia , Halobacterium/fisiologia , Mapas de Interação de Proteínas , Transdução de Sinais , Regulação da Expressão Gênica em Archaea , Halobacterium/genética , Mapeamento de Interação de Proteínas
6.
Cryobiology ; 63(3): 210-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21906587

RESUMO

Antifreeze proteins (AFPs), characterized by their ability to separate the melting and growth temperatures of ice and to inhibit ice recrystallization, play an important role in cold adaptation of several polar and cold-tolerant organisms. Recently, a multigene family of AFP genes was found in the diatom Fragilariopsis cylindrus, a dominant species within polar sea ice assemblages. This study presents the AFP from F. cylindrus set in a molecular and crystallographic frame. Differential protein expression after exposure of the diatoms to environmentally relevant conditions underlined the importance of certain AFP isoforms in response to cold. Analyses of the recombinant AFP showed freezing point depression comparable to the activity of other moderate AFPs and further enhanced by salt (up to 0.9°C in low salinity buffer, 2.5°C at high salinity). However, unlike other moderate AFPs, its fastest growth direction is perpendicular to the c-axis. The protein also caused strong inhibition of recrystallization at concentrations of 1.2 and 0.12 µM at low and high salinity, respectively. Observations of crystal habit modifications and pitting activity suggested binding of AFPs to multiple faces of the ice crystals. Further analyses showed striations caused by AFPs, interpreted as inclusion in the ice. We suggest that the influence on ice microstructure is the main characteristic of these AFPs in sea ice.


Assuntos
Proteínas Anticongelantes/química , Diatomáceas , Isoformas de Proteínas/química , Proteínas Recombinantes/química , Proteínas Anticongelantes/genética , Proteínas Anticongelantes/metabolismo , Clonagem Molecular , Clima Frio , Temperatura Baixa , Cristalização , Diatomáceas/genética , Diatomáceas/metabolismo , Escherichia coli , Congelamento , Camada de Gelo , Osmometria , Plasmídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidade , Sais/química , Transformação Bacteriana
7.
Protein Expr Purif ; 73(2): 217-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20546897

RESUMO

GAGE cancer-germline antigens are frequently expressed in a broad range of different cancers, while their expression in normal tissues is limited to the germ cells of the immune privileged organs, testis and ovary. GAGE proteins are immunogenic in humans, which make them promising targets for immunotherapy and candidates for cancer vaccines. Recombinant proteins may be superior to peptides as immunogens, since they have the potential to prime both CD4(+) and CD8(+) T cells and are not dependent on patient HLA-type. We have developed a method for production of highly pure recombinant GAGE12I-His by intracellular expression in yeast (Pichia pastoris) and nickel affinity, ion exchange and gel filtration purification. The identity of the purified protein was confirmed by mass spectrometry. This strategy yielded a total of 48 mg of highly pure (>98%) GAGE12I from 8 L of culture (6 mg/l). Interestingly, gel filtration and formaldehyde cross-linking indicated that GAGE12I forms tetramers. The purified recombinant GAGE12I represents a candidate molecule for vaccination of cancer patients and will form the basis for further structural analysis of GAGE proteins.


Assuntos
Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/isolamento & purificação , Antígenos de Neoplasias/metabolismo , Imunoterapia/métodos , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/metabolismo , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Feminino , Histidina/química , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Pichia/imunologia , Proteínas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
8.
Sci Rep ; 10(1): 13297, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764653

RESUMO

In bioengineering, scaffold proteins have been increasingly used to recruit molecules to parts of a cell, or to enhance the efficacy of biosynthetic or signalling pathways. For example, scaffolds can be used to make weak or non-immunogenic small molecules immunogenic by attaching them to the scaffold, in this role called carrier. Here, we present the dodecin from Mycobacterium tuberculosis (mtDod) as a new scaffold protein. MtDod is a homododecameric complex of spherical shape, high stability and robust assembly, which allows the attachment of cargo at its surface. We show that mtDod, either directly loaded with cargo or equipped with domains for non-covalent and covalent loading of cargo, can be produced recombinantly in high quantity and quality in Escherichia coli. Fusions of mtDod with proteins of up to four times the size of mtDod, e.g. with monomeric superfolder green fluorescent protein creating a 437 kDa large dodecamer, were successfully purified, showing mtDod's ability to function as recruitment hub. Further, mtDod equipped with SYNZIP and SpyCatcher domains for post-translational recruitment of cargo was prepared of which the mtDod/SpyCatcher system proved to be particularly useful. In a case study, we finally show that mtDod-peptide fusions allow producing antibodies against human heat shock proteins and the C-terminus of heat shock cognate 70 interacting protein (CHIP).


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Imunização/métodos , Engenharia de Proteínas , Proteínas de Bactérias/química , Mycobacterium tuberculosis/genética , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia
9.
Sci Rep ; 8(1): 4060, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497092

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

10.
G3 (Bethesda) ; 8(1): 79-89, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29118030

RESUMO

Efficient preparation of high-quality sequencing libraries that well represent the biological sample is a key step for using next-generation sequencing in research. Tn5 enables fast, robust, and highly efficient processing of limited input material while scaling to the parallel processing of hundreds of samples. Here, we present a robust Tn5 transposase purification strategy based on an N-terminal His6-Sumo3 tag. We demonstrate that libraries prepared with our in-house Tn5 are of the same quality as those processed with a commercially available kit (Nextera XT), while they dramatically reduce the cost of large-scale experiments. We introduce improved purification strategies for two versions of the Tn5 enzyme. The first version carries the previously reported point mutations E54K and L372P, and stably produces libraries of constant fragment size distribution, even if the Tn5-to-input molecule ratio varies. The second Tn5 construct carries an additional point mutation (R27S) in the DNA-binding domain. This construct allows for adjustment of the fragment size distribution based on enzyme concentration during tagmentation, a feature that opens new opportunities for use of Tn5 in customized experimental designs. We demonstrate the versatility of our Tn5 enzymes in different experimental settings, including a novel single-cell polyadenylation site mapping protocol as well as ultralow input DNA sequencing.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação Puntual , Proteínas Recombinantes de Fusão/genética , Transposases/genética , Sequência de Bases , Clonagem Molecular/métodos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Poliadenilação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Transposases/metabolismo
11.
J Mol Biol ; 355(4): 640-50, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16330046

RESUMO

Using single-molecule force spectroscopy we characterized inter- and intramolecular interactions stabilizing structural segments of individual bacteriorhodopsin (BR) molecules assembled into trimers and dimers, and monomers. While the assembly of BR did not vary the location of these structural segments, their intrinsic stability could change up to 70% increasing from monomer to dimer to trimer. Since each stable structural segment established one unfolding barrier, we conclude that the locations of unfolding barriers were determined by intramolecular interactions but that their strengths were strongly influenced by intermolecular interactions. Subtracting the unfolding forces of the BR trimer from that of monomer allowed us to calculate the contribution of inter- and intramolecular interactions to the membrane protein stabilization. Statistical analyses showed that the unfolding pathways of differently assembled BR molecules did not differ in their appearance but in their population. This suggests that in our experiments the membrane protein assembly does not necessarily change the location of unfolding barriers within the protein, but certainly their strengths, and thus alters the probability of a protein to choose certain unfolding pathways.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Bacteriorodopsinas/genética , Bacteriorodopsinas/ultraestrutura , Cristalografia por Raios X , Halobacterium salinarum/genética , Microscopia de Força Atômica , Modelos Moleculares , Mutação/genética , Ligação Proteica , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Análise Espectral
12.
Methods Mol Biol ; 1586: 141-154, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28470603

RESUMO

Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for antibody generation or larger peptides with defined sequence that are difficult express on their own.


Assuntos
Cisteína Endopeptidases/genética , Dissulfetos/química , Escherichia coli/genética , Ubiquitinas/genética , Sequência de Aminoácidos , Clonagem Molecular/métodos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Humanos , Domínios Proteicos , Redobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Ubiquitinas/química , Ubiquitinas/metabolismo
13.
Sci Rep ; 7(1): 1872, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500343

RESUMO

The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program.

14.
Curr Opin Struct Biol ; 38: 155-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27449695

RESUMO

Gene synthesis enables the exploitation of the degeneracy of the genetic code to boost expression of recombinant protein targets for structural studies. This has created new opportunities to obtain structural information on proteins that are normally present in low abundance. Unfortunately, synthetic gene expression occasionally leads to insoluble or misfolded proteins. This could be remedied by recent insights in the effect of codon usage on translation initiation and elongation. In this review, we discuss the interplay between optimal gene and vector design to enhance expression in a particular host and highlight the benefits and potential pitfalls associated with protein expression from synthetic genes.


Assuntos
Engenharia Genética/métodos , Proteínas Recombinantes/genética , Códon/genética , Vetores Genéticos/genética , Dobramento de Proteína , RNA Mensageiro/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
15.
Data Brief ; 8: 733-40, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27508226

RESUMO

Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) has been implicated in a range of conditions and pathologies from prostate to hepatic cancer. Here, we describe the expression in Escherichia coli and the purification protocol for the following constructs: full-length CaMKK2 in complex with CaM, CaMKK2 'apo', CaMKK2 (165-501) in complex with CaM, and the CaMKK2 F267G mutant. The protocols described have been optimized for maximum yield and purity with minimal purification steps required and the proteins subsequently used to develop a fluorescence-based assay for drug binding to the kinase, "Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2" [1].

16.
FEBS Lett ; 579(29): 6595-600, 2005 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-16293253

RESUMO

Nucleoside diphosphate kinase from the halophilic archaeon Halobacterium salinarum was crystallized in a free state and a substrate-bound form with CDP. The structures were solved to a resolution of 2.35 and 2.2A, respectively. Crystals with the apo-form were obtained with His6-tagged enzyme, whereas the untagged form was used for co-crystallization with the nucleotide. Crosslinking under different salt and pH conditions revealed a stronger oligomerization tendency for the tagged protein at low and high salt concentrations. The influence of the His6-tag on the halophilic nature of the enzyme is discussed on the basis of the observed structural properties.


Assuntos
Halobacterium salinarum/enzimologia , Núcleosídeo-Difosfato Quinase/química , Cristalização , Cristalografia por Raios X , Desoxicitidina/química , Dimerização , Concentração de Íons de Hidrogênio , Concentração Osmolar , Ligação Proteica
17.
PLoS One ; 10(8): e0132898, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26263512

RESUMO

The Baculoviral Expression Vector System (BEVS) is the most commonly used method for high expression of recombinant protein in insect cells. Nevertheless, expression of some target proteins--especially those entering the secretory pathway--provides a severe challenge for the baculovirus infected insect cells, due to the reorganisation of intracellular compounds upon viral infection. Therefore, alternative strategies for recombinant protein production in insect cells like transient plasmid-based expression or stable expression cell lines are becoming more popular. However, the major bottleneck of these systems is the lack of strong endogenous polymerase II dependent promoters, as the strong baculoviral p10 and polH promoters used in BEVS are only functional in presence of the viral transcription machinery during the late phase of infection. In this work we present a draft genome and a transcriptome analysis of Sf21 cells for the identification of the first known endogenous Spodoptera frugiperda promoters. Therefore, putative promoter sequences were identified and selected because of high mRNA level or in analogy to other strong promoters in other eukaryotic organism. The chosen endogenous Sf21 promoters were compared to early viral promoters for their efficiency to trigger eGFP expression using transient plasmid based transfection in a BioLector Microfermentation system. Furthermore, promoter activity was not only shown in Sf21 cells but also in Hi5 cells. The novel endogenous Sf21 promoters were ranked according to their activity and expand the small pool of available promoters for stable insect cell line development and transient plasmid expression in insect cells. The best promoter was used to improve plasmid based transient transfection in insect cells substantially.


Assuntos
Genômica , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Genômica/métodos , Humanos , Íntrons , Dados de Sequência Molecular , Plasmídeos/genética , RNA Mensageiro/genética , Transcriptoma
18.
PLoS One ; 8(12): e82878, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367567

RESUMO

Escherichia coli is a robust, economic and rapid expression system for the production of recombinant therapeutic proteins. However, the expression in bacterial systems of complex molecules such as antibodies and fusion proteins is still affected by several drawbacks. We have previously described a procedure based on uteroglobin (UG) for the engineering of very soluble and stable polyvalent and polyspecific fusion proteins in mammalian cells (Ventura et al. 2009. J. Biol. Chem. 284∶26646-26654.) Here, we applied the UG platform to achieve the expression in E. coli of a bivalent human recombinant antibody (L19) toward the oncofetal fibronectin (B-FN), a pan-tumor target. Purified bacterial L19-UG was highly soluble, stable, and, in all molecules, the L19 moiety maintained its immunoreactivity. About 50-70% of the molecules were covalent homodimer, however after refolding with the redox couple reduced-glutathione/oxidized-glutathione (GSH/GSSG), 100% of molecules were covalent dimers. Mass spectrometry studies showed that the proteins produced by E. coli and mammalian cells have an identical molecular mass and that both proteins are not glycosylated. L19-UG from bacteria can be freeze-dried without any loss of protein and immunoreactivity. In vivo, in tumor-bearing mice, radio-iodinated L19-UG selectively accumulated in neoplastic tissues showing the same performance of L19-UG from mammalian cells. The UG-platform may represent a general procedure for production of various biological therapeutics in E. coli.


Assuntos
Anticorpos/imunologia , Escherichia coli/metabolismo , Fibronectinas/imunologia , Uteroglobina/metabolismo , Animais , Anticorpos/genética , Anticorpos/metabolismo , Escherichia coli/genética , Humanos , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos SCID , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Uteroglobina/química
19.
PLoS One ; 7(9): e45819, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029259

RESUMO

GAGE proteins are highly similar, primate-specific molecules with unique primary structure and undefined cellular roles. They are restricted to cells of the germ line in adult healthy individuals, but are broadly expressed in a wide range of cancers. In a yeast two-hybrid screen we identified the metazoan transcriptional regulator, Germ cell-less (GCL), as an interaction partner of GAGE12I. GCL directly binds LEM-domain proteins (LAP2ß, emerin, MAN1) at the nuclear envelope, and we found that GAGE proteins were recruited to the nuclear envelope inner membrane by GCL. Based on yeast two-hybrid analysis and pull-down experiments of GCL polypeptides, GCL residues 209-320 (which includes the BACK domain) were deduced sufficient for association with GAGE proteins. GAGE mRNAs and GCL mRNA were demonstrated in human testis and most types of cancers, and at the protein level GAGE members and GCL were co-expressed in cancer cell lines. Structural studies of GAGE proteins revealed no distinct secondary or tertiary structure, suggesting they are intrinsically disordered. Interestingly GAGE proteins formed stable complexes with dsDNA in vitro at physiological concentrations, and GAGE12I bound several different dsDNA fragments, suggesting sequence-nonspecific binding. Dual association of GAGE family members with GCL at the nuclear envelope inner membrane in cells, and with dsDNA in vitro, implicate GAGE proteins in chromatin regulation in germ cells and cancer cells.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Fatores de Transcrição/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Linhagem Celular , Transformação Celular Neoplásica/metabolismo , Cromatina/metabolismo , Dicroísmo Circular , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Expressão Gênica , Humanos , Masculino , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Especificidade de Órgãos , Plasmídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Testículo/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
20.
J Proteome Res ; 7(3): 1118-30, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18271523

RESUMO

Mass spectrometry based proteomics can routinely identify hundreds of proteins in a single LC-MS run, and methods have been developed for relative quantitation between differentially treated samples using stable isotopes. However, absolute quantitation has so far required addition of a labeled standard late in the experimental workflow, introducing variability due to sample preparation. Here we present a new variant of the stable isotope labeling by amino acids in cell culture (SILAC) technique termed "Absolute SILAC" that allows accurate quantitation of selected proteins in complex mixtures. SILAC-labeled recombinant proteins produced in vivo or in vitro are used as internal standards, which are directly mixed into lysates of cells or tissues. This minimizes differences in sample processing between the isotope-labeled standard and its endogenous counterpart. We show that it is possible to quantify over several orders of magnitude, even in the background of a whole cell lysate. We furthermore devise a strategy to quantify peptides at or below their signal-to-noise level on hybrid ion trap instruments, shown here for the LTQ-Orbitrap. The data system triggers on peptides of the SILAC-labeled protein, initiating ion collection in a narrow mass range including the endogenous and labeled peptide. This strategy extends the regular detection limit of an LTQ-Orbitrap by at least an order of magnitude and accurately quantifies down to 150 attomole of protein in a cell lysate without any fractionation prior to LC-MS. We use Absolute SILAC to determine the copy number per cell of growth factor receptor-bound protein 2 (Grb2) in HeLa, HepG2, and C2C12 cells to 5.5 x 10(5), 8.8 x 10(5), and 5.7 x 10(5), respectively, in the exponential growth phase.


Assuntos
Proteínas Recombinantes/análise , Linhagem Celular , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Humanos , Nanotecnologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA