RESUMO
BACKGROUND: Naturally-acquired antibody responses to antigens on the surface of Plasmodium falciparum-infected red blood cells (iRBCs) have been implicated in antimalarial immunity. To profile the development of this immunity, we have been studying a cohort of Malian children living in an area with intense seasonal malaria transmission. METHODOLOGY/PRINCIPAL FINDINGS: We collected plasma from a sub-cohort of 176 Malian children aged 3-11 years, before (May) and after (December) the 2009 transmission season. To measure the effect of hemoglobin (Hb) type on antibody responses, we enrolled age-matched HbAA, HbAS and HbAC children. To quantify antibody recognition of iRBCs, we designed a high-throughput flow cytometry assay to rapidly test numerous plasma samples against multiple parasite strains. We evaluated antibody reactivity of each plasma sample to 3 laboratory-adapted parasite lines (FCR3, D10, PC26) and 4 short-term-cultured parasite isolates (2 Malian and 2 Cambodian). 97% of children recognized ≥1 parasite strain and the proportion of IgG responders increased significantly during the transmission season for most parasite strains. Both strain-specific and strain-transcending IgG responses were detected, and varied by age, Hb type and parasite strain. In addition, the breadth of IgG responses to parasite strains increased with age in HbAA, but not in HbAS or HbAC, children. CONCLUSIONS/SIGNIFICANCE: Our assay detects both strain-specific and strain-transcending IgG responses to iRBCs. The magnitude and breadth of these responses varied not only by age, but also by Hb type and parasite strain used. These findings indicate that studies of acquired humoral immunity should account for Hb type and test large numbers of diverse parasite strains.
Assuntos
Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Hemoglobinas/classificação , Imunoglobulina G/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Fatores Etários , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Eritrócitos/metabolismo , Hemoglobinas/genética , Humanos , Incidência , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Mali/epidemiologia , Estações do AnoRESUMO
Hemoglobin (Hb) variants are associated with reduced risk of life-threatening Plasmodium falciparum malaria syndromes, including cerebral malaria and severe malarial anemia. Despite decades of research, the mechanisms by which common Hb variants - sickle HbS, HbC, α-thalassemia, fetal HbF - protect African children against severe and fatal malaria have not been fully elucidated. In vitro experimental and epidemiological data have long suggested that Hb variants do not confer malaria protection by restricting the growth of parasites in red blood cells (RBCs). Recently, four Hb variants were found to impair cytoadherence, the binding of P. falciparum-infected RBCs (PfRBCs) to microvascular endothelial cells (MVECs), a centrally important event in both parasite survival and malaria pathogenesis in humans. Impaired cytoadherence is associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite's major cytoadherence ligand and virulence factor, on the surface of host RBCs. We propose a model in which Hb variants allow parasites to display relatively low levels of PfEMP1, sufficient for sequestering PfRBCs in microvessels and avoiding their clearance from the bloodstream by the spleen. By preventing the display of high levels of PfEMP1, Hb variants may weaken the binding of PfRBCs to MVECs, compromising their ability to activate endothelium and initiate the downstream microvascular events that drive the pathogenesis of malaria.