Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 183(7): 1930-1945.e23, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33188777

RESUMO

RNA viruses are among the most prevalent pathogens and are a major burden on society. Although RNA viruses have been studied extensively, little is known about the processes that occur during the first several hours of infection because of a lack of sensitive assays. Here we develop a single-molecule imaging assay, virus infection real-time imaging (VIRIM), to study translation and replication of individual RNA viruses in live cells. VIRIM uncovered a striking heterogeneity in replication dynamics between cells and revealed extensive coordination between translation and replication of single viral RNAs. Furthermore, using VIRIM, we identify the replication step of the incoming viral RNA as a major bottleneck of successful infection and identify host genes that are responsible for inhibition of early virus replication. Single-molecule imaging of virus infection is a powerful tool to study virus replication and virus-host interactions that may be broadly applicable to RNA viruses.


Assuntos
Biossíntese de Proteínas , Vírus de RNA/fisiologia , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Transporte de RNA , RNA Viral/genética , Reprodutibilidade dos Testes , Imagem Individual de Molécula , Fatores de Tempo
2.
Cell ; 181(6): 1291-1306.e19, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32407674

RESUMO

Enteroendocrine cells (EECs) sense intestinal content and release hormones to regulate gastrointestinal activity, systemic metabolism, and food intake. Little is known about the molecular make-up of human EEC subtypes and the regulated secretion of individual hormones. Here, we describe an organoid-based platform for functional studies of human EECs. EEC formation is induced in vitro by transient expression of NEUROG3. A set of gut organoids was engineered in which the major hormones are fluorescently tagged. A single-cell mRNA atlas was generated for the different EEC subtypes, and their secreted products were recorded by mass-spectrometry. We note key differences to murine EECs, including hormones, sensory receptors, and transcription factors. Notably, several hormone-like molecules were identified. Inter-EEC communication is exemplified by secretin-induced GLP-1 secretion. Indeed, individual EEC subtypes carry receptors for various EEC hormones. This study provides a rich resource to study human EEC development and function.


Assuntos
Células Enteroendócrinas/metabolismo , RNA Mensageiro/genética , Células Cultivadas , Hormônios Gastrointestinais/genética , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/genética , Humanos , Organoides/metabolismo , Fatores de Transcrição/genética , Transcriptoma/genética
3.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978343

RESUMO

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/crescimento & desenvolvimento , Venenos de Serpentes/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Cobras Corais/metabolismo , Perfilação da Expressão Gênica/métodos , Organoides/metabolismo , Glândulas Salivares/metabolismo , Venenos de Serpentes/genética , Serpentes/genética , Serpentes/crescimento & desenvolvimento , Células-Tronco/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
4.
Cell ; 176(5): 1158-1173.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712869

RESUMO

Homeostatic regulation of the intestinal enteroendocrine lineage hierarchy is a poorly understood process. We resolved transcriptional changes during enteroendocrine differentiation in real time at single-cell level using a novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification. A bi-fluorescent reporter, Neurog3Chrono, measures time from the onset of enteroendocrine differentiation and enables precise positioning of single-cell transcriptomes along an absolute time axis. This approach yielded a definitive description of the enteroendocrine hierarchy and its sub-lineages, uncovered differential kinetics between sub-lineages, and revealed time-dependent hormonal plasticity in enterochromaffin and L cells. The time-resolved map of transcriptional changes predicted multiple novel molecular regulators. Nine of these were validated by conditional knockout in mice or CRISPR modification in intestinal organoids. Six novel candidate regulators (Sox4, Rfx6, Tox3, Myt1, Runx1t1, and Zcchc12) yielded specific enteroendocrine phenotypes. Our time-resolved single-cell transcriptional map presents a rich resource to unravel enteroendocrine differentiation.


Assuntos
Linhagem da Célula/genética , Células Enteroendócrinas/metabolismo , Perfilação da Expressão Gênica/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem da Célula/fisiologia , Células Enteroendócrinas/fisiologia , Corantes Fluorescentes , Proteínas de Homeodomínio/genética , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Imagem Óptica/métodos , Organoides , Fenótipo , Análise de Célula Única/métodos , Células-Tronco , Fatores de Transcrição/genética , Transcriptoma/genética
5.
Nat Rev Mol Cell Biol ; 22(1): 39-53, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958874

RESUMO

Intestinal stem cells at the bottom of crypts fuel the rapid renewal of the different cell types that constitute a multitasking tissue. The intestinal epithelium facilitates selective uptake of nutrients while acting as a barrier for hostile luminal contents. Recent discoveries have revealed that the lineage plasticity of committed cells - combined with redundant sources of niche signals - enables the epithelium to efficiently repair tissue damage. New approaches such as single-cell transcriptomics and the use of organoid models have led to the identification of the signals that guide fate specification of stem cell progeny into the six intestinal cell lineages. These cell types display context-dependent functionality and can adapt to different requirements over their lifetime, as dictated by their microenvironment. These new insights into stem cell regulation and fate specification could aid the development of therapies that exploit the regenerative capacity and functionality of the gut.


Assuntos
Diferenciação Celular , Linhagem da Célula , Mucosa Intestinal/citologia , Regeneração , Células-Tronco/citologia , Animais , Humanos , Transdução de Sinais
6.
Cell ; 170(1): 10-11, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666112

RESUMO

Gut-brain signaling plays a central role in a range of homeostatic processes, yet details of this cross-talk remain enigmatic. In this issue of Cell, Bellono and colleagues identify a variety of luminal stimuli acting on serotonin-secreting enteroendocrine cells and, for the first time, demonstrate a functional synaptic interaction with neurons.


Assuntos
Células Enteroendócrinas , Serotonina , Transdução de Sinais , Olfato
8.
Nature ; 580(7802): 269-273, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106218

RESUMO

Various species of the intestinal microbiota have been associated with the development of colorectal cancer1,2, but it has not been demonstrated that bacteria have a direct role in the occurrence of oncogenic mutations. Escherichia coli can carry the pathogenicity island pks, which encodes a set of enzymes that synthesize colibactin3. This compound is believed to alkylate DNA on adenine residues4,5 and induces double-strand breaks in cultured cells3. Here we expose human intestinal organoids to genotoxic pks+ E. coli by repeated luminal injection over five months. Whole-genome sequencing of clonal organoids before and after this exposure revealed a distinct mutational signature that was absent from organoids injected with isogenic pks-mutant bacteria. The same mutational signature was detected in a subset of 5,876 human cancer genomes from two independent cohorts, predominantly in colorectal cancer. Our study describes a distinct mutational signature in colorectal cancer and implies that the underlying mutational process results directly from past exposure to bacteria carrying the colibactin-producing pks pathogenicity island.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Ilhas Genômicas/genética , Mutagênese , Mutação , Técnicas de Cocultura , Estudos de Coortes , Sequência Consenso , Dano ao DNA , Microbioma Gastrointestinal , Humanos , Organoides/citologia , Organoides/metabolismo , Organoides/microbiologia , Peptídeos/genética , Policetídeos
9.
EMBO J ; 40(5): e105912, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283287

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Assuntos
Células Epiteliais Alveolares/metabolismo , COVID-19/metabolismo , Modelos Biológicos , Organoides/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/virologia , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/biossíntese , Interferons/biossíntese , Organoides/patologia , Organoides/virologia , Células Vero , Interferon lambda
10.
Proc Natl Acad Sci U S A ; 119(46): e2212057119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343264

RESUMO

Enteroendocrine cells (EECs) secrete hormones in response to ingested nutrients to control physiological processes such as appetite and insulin release. EEC hormones are synthesized as large proproteins that undergo proteolytic processing to generate bioactive peptides. Mutations in EEC-enriched proteases are associated with endocrinopathies. Due to the relative rarity of EECs and a paucity of in vitro models, intestinal prohormone processing remains challenging to assess. Here, human gut organoids in which EECs can efficiently be induced are subjected to CRISPR-Cas9-mediated modification of EEC-expressed endopeptidase and exopeptidase genes. We employ mass spectrometry-based analyses to monitor peptide processing and identify glucagon production in intestinal EECs, stimulated upon bone morphogenic protein (BMP) signaling. We map the substrates and products of major EECs endo- and exopeptidases. Our studies provide a comprehensive description of peptide hormones produced by human EECs and define the roles of specific proteases in their generation.


Assuntos
Organoides , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Células Enteroendócrinas/metabolismo , Insulina/metabolismo , Endopeptidases/metabolismo
11.
J Virol ; 97(8): e0085123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37555660

RESUMO

SARS-CoV-2 can enter cells after its spike protein is cleaved by either type II transmembrane serine proteases (TTSPs), like TMPRSS2, or cathepsins. It is now widely accepted that the Omicron variant uses TMPRSS2 less efficiently and instead enters cells via cathepsins, but these findings have yet to be verified in more relevant cell models. Although we could confirm efficient cathepsin-mediated entry for Omicron in a monkey kidney cell line, experiments with protease inhibitors showed that Omicron (BA.1 and XBB1.5) did not use cathepsins for entry into human airway organoids and instead utilized TTSPs. Likewise, CRISPR-edited intestinal organoids showed that entry of Omicron BA.1 relied on the expression of the serine protease TMPRSS2 but not cathepsin L or B. Together, these data force us to rethink the concept that Omicron has adapted to cathepsin-mediated entry and indicate that TTSP inhibitors should not be dismissed as prophylactic or therapeutic antiviral strategy against SARS-CoV-2. IMPORTANCE Coronavirus entry relies on host proteases that activate the viral fusion protein, spike. These proteases determine the viral entry route, tropism, host range, and can be attractive drug targets. Whereas earlier studies using cell lines suggested that the Omicron variant of SARS-CoV-2 has changed its protease usage, from cell surface type II transmembrane serine proteases (TTSPs) to endosomal cathepsins, we report that this is not the case in human airway and intestinal organoid models, suggesting that host TTSP inhibition is still a viable prophylactic or therapeutic antiviral strategy against current SARS-CoV-2 variants and highlighting the importance of relevant human in vitro cell models.


Assuntos
Serina Proteases , Humanos , Antivirais , COVID-19/virologia , SARS-CoV-2/fisiologia , Serina Proteases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
12.
Development ; 143(20): 3639-3649, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27802133

RESUMO

The intestinal epithelium is the fastest renewing tissue in mammals and has a large flexibility to adapt to different types of damage. Lgr5+ crypt base columnar (CBC) cells act as stem cells during homeostasis and are essential during regeneration. Upon perturbation, the activity of CBCs is dynamically regulated to maintain homeostasis and multiple dedicated progenitor cell populations can reverse to the stem cell state upon damage, adding another layer of compensatory mechanisms to facilitate regeneration. Here, we review our current understanding of how intestinal stem and progenitor cells contribute to homeostasis and regeneration, and the different signaling pathways that regulate their behavior. Nutritional state and inflammation have been recently identified as upstream regulators of stem cell activity in the mammalian intestine, and we explore how these systemic signals can influence homeostasis and regeneration.


Assuntos
Intestinos/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Homeostase/genética , Homeostase/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Regeneração/genética , Regeneração/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
13.
EMBO J ; 33(18): 2057-68, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25092767

RESUMO

Cycling Lgr5+ stem cells fuel the rapid turnover of the adult intestinal epithelium. The existence of quiescent Lgr5+ cells has been reported, while an alternative quiescent stem cell population is believed to reside at crypt position +4. Here, we generated a novel Ki67RFP knock-in allele that identifies dividing cells. Using Lgr5-GFP;Ki67RFP mice, we isolated crypt stem and progenitor cells with distinct Wnt signaling levels and cell cycle features and generated their molecular signature using microarrays. Stem cell potential of these populations was further characterized using the intestinal organoid culture. We found that Lgr5high stem cells are continuously in cell cycle, while a fraction of Lgr5low progenitors that reside predominantly at +4 position exit the cell cycle. Unlike fast dividing CBCs, Lgr5low Ki67- cells have lost their ability to initiate organoid cultures, are enriched in secretory differentiation factors, and resemble the Dll1 secretory precursors and the label-retaining cells of Winton and colleagues. Our findings support the cycling stem cell hypothesis and highlight the cell cycle heterogeneity of early progenitors during lineage commitment.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Genes Reporter , Receptores Acoplados a Proteínas G/análise , Células-Tronco/fisiologia , Animais , Divisão Celular , Técnicas de Introdução de Genes , Mucosa Intestinal/citologia , Mucosa Intestinal/fisiologia , Antígeno Ki-67/biossíntese , Antígeno Ki-67/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Análise em Microsséries , Células-Tronco/química , Via de Sinalização Wnt
14.
Proc Natl Acad Sci U S A ; 112(47): E6476-85, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26542681

RESUMO

Lung adenocarcinoma, a major form of non-small cell lung cancer, is the leading cause of cancer deaths. The Cancer Genome Atlas analysis of lung adenocarcinoma has identified a large number of previously unknown copy number alterations and mutations, requiring experimental validation before use in therapeutics. Here, we describe an shRNA-mediated high-throughput approach to test a set of genes for their ability to function as tumor suppressors in the background of mutant KRas and WT Tp53. We identified several candidate genes from tumors originated from lentiviral delivery of shRNAs along with Cre recombinase into lungs of Loxp-stop-Loxp-KRas mice. Ephrin receptorA2 (EphA2) is among the top candidate genes and was reconfirmed by two distinct shRNAs. By generating knockdown, inducible knockdown and knockout cell lines for loss of EphA2, we showed that negating its expression activates a transcriptional program for cell proliferation. Loss of EPHA2 releases feedback inhibition of KRAS, resulting in activation of ERK1/2 MAP kinase signaling, leading to enhanced cell proliferation. Intriguingly, loss of EPHA2 induces activation of GLI1 transcription factor and hedgehog signaling that further contributes to cell proliferation. Small molecules targeting MEK1/2 and Smoothened hamper proliferation in EphA2-deficient cells. Additionally, in EphA2 WT cells, activation of EPHA2 by its ligand, EFNA1, affects KRAS-RAF interaction, leading to inhibition of the RAS-RAF-MEK-ERK pathway and cell proliferation. Together, our studies have identified that (i) EphA2 acts as a KRas cooperative tumor suppressor by in vivo screen and (ii) reactivation of the EphA2 signal may serve as a potential therapeutic for KRas-induced human lung cancers.


Assuntos
Adenocarcinoma/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptor EphA2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenocarcinoma de Pulmão , Animais , Sequência de Bases , Carcinogênese/patologia , Proliferação de Células , Ativação Enzimática , Técnicas de Silenciamento de Genes , Genoma Humano , Proteínas Hedgehog/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases , Camundongos Knockout , Dados de Sequência Molecular , Mutação/genética , RNA Interferente Pequeno/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Stem Cell ; 31(1): 7-24, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181752

RESUMO

All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.


Assuntos
Mamíferos , Nicho de Células-Tronco , Animais , Células-Tronco
17.
Cell Rep ; 43(1): 113614, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38159278

RESUMO

Organoid technology is rapidly gaining ground for studies on organ (patho)physiology. Tubuloids are long-term expanding organoids grown from adult kidney tissue or urine. The progenitor state of expanding tubuloids comes at the expense of differentiation. Here, we differentiate tubuloids to model the distal nephron and collecting ducts, essential functional parts of the kidney. Differentiation suppresses progenitor traits and upregulates genes required for function. A single-cell atlas reveals that differentiation predominantly generates thick ascending limb and principal cells. Differentiated human tubuloids express luminal NKCC2 and ENaC capable of diuretic-inhibitable electrolyte uptake and enable disease modeling as demonstrated by a lithium-induced tubulopathy model. Lithium causes hallmark AQP2 loss, induces proliferation, and upregulates inflammatory mediators, as seen in vivo. Lithium also suppresses electrolyte transport in multiple segments. In conclusion, this tubuloid model enables modeling of the human distal nephron and collecting duct in health and disease and provides opportunities to develop improved therapies.


Assuntos
Aquaporina 2 , Lítio , Adulto , Humanos , Lítio/farmacologia , Néfrons , Rim , Eletrólitos , Organoides
18.
Nat Biomed Eng ; 8(4): 345-360, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38114742

RESUMO

Predicting the toxicity of cancer immunotherapies preclinically is challenging because models of tumours and healthy organs do not typically fully recapitulate the expression of relevant human antigens. Here we show that patient-derived intestinal organoids and tumouroids supplemented with immune cells can be used to study the on-target off-tumour toxicities of T-cell-engaging bispecific antibodies (TCBs), and to capture clinical toxicities not predicted by conventional tissue-based models as well as inter-patient variabilities in TCB responses. We analysed the mechanisms of T-cell-mediated damage of neoplastic and donor-matched healthy epithelia at a single-cell resolution using multiplexed immunofluorescence. We found that TCBs that target the epithelial cell-adhesion molecule led to apoptosis in healthy organoids in accordance with clinical observations, and that apoptosis is associated with T-cell activation, cytokine release and intra-epithelial T-cell infiltration. Conversely, tumour organoids were more resistant to damage, probably owing to a reduced efficiency of T-cell infiltration within the epithelium. Patient-derived intestinal organoids can aid the study of immune-epithelial interactions as well as the preclinical and clinical development of cancer immunotherapies.


Assuntos
Anticorpos Biespecíficos , Apoptose , Organoides , Linfócitos T , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Humanos , Organoides/imunologia , Linfócitos T/imunologia , Intestinos/imunologia , Imunoterapia/métodos , Molécula de Adesão da Célula Epitelial/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Feminino , Mucosa Intestinal/imunologia
19.
Cancer Cell ; 41(12): 2083-2099.e9, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38086335

RESUMO

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Assuntos
Carcinoma Neuroendócrino , Neoplasias Pulmonares , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pancreáticas/patologia
20.
Cell Rep ; 38(9): 110438, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235783

RESUMO

Intestinal epithelial cells derive from stem cells at the crypt base and travel along the crypt-villus axis to die at the villus tip. The two dominant villus epithelial cell types, absorptive enterocytes and mucous-secreting goblet cells, are mature when they exit crypts. Murine enterocytes switch functional cell states during migration along the villus. Here, we ask whether this zonation is driven by the bone morphogenetic protein (BMP) gradient, which increases toward the villus. Using human intestinal organoids, we show that BMP signaling controls the expression of zonated genes in enterocytes. We find that goblet cells display similar zonation involving antimicrobial genes. Using an inducible Bmpr1a knockout mouse model, we confirm that BMP controls these zonated genes in vivo. Our findings imply that local manipulation of BMP signal strength may be used to reset the enterocyte "rheostat" of carbohydrate versus lipid uptake and to control the antimicrobial response through goblet cells.


Assuntos
Enterócitos , Células Caliciformes , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Enterócitos/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA