Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1428736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114484

RESUMO

The pathogenesis of Parkinson's disease (PD) is characterized by progressive deposition of alpha-synuclein (α-syn) aggregates in dopaminergic neurons and neuroinflammation. Noninvasive in vivo imaging of α-syn aggregate accumulation and neuroinflammation can elicit the underlying mechanisms involved in disease progression and facilitate the development of effective treatment as well as disease diagnosis and prognosis. Here we present a novel approach to simultaneously profile α-syn aggregation and reactive microgliosis in vivo, by targeting oligomeric α-syn in cerebrospinal fluid with nanoparticle bearing a magnetic resonance imaging (MRI), contrast payload. In this proof-of-concept report we demonstrate, in vitro, that microglia and neuroblastoma cell lines internalize agglomerates formed by cross-linking the nanoparticles with oligomeric α-syn. Delayed in vivo MRI scans following intravenous administration of the nanoparticles in the M83 α-syn transgenic mouse line show statistically significant MR signal enhancement in test mice versus controls. The in vivo data were validated by ex-vivo immunohistochemical analysis which show strong correlation between in vivo MRI signal enhancement, Lewy pathology distribution, and microglia activity in the treated brain tissue. Furthermore, neuronal and microglial cells in brain tissue from treated mice display strong cytosolic signal originating from the nanoparticles, attributed to in vivo cell uptake of nanoparticle/oligomeric α-syn agglomerates.

2.
medRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993653

RESUMO

Introduction: Placenta accreta spectrum (PAS) occurs when the placenta is pathologically adherent to the myometrium. An intact retroplacental clear space (RPCS) is a marker of normal placentation, but visualization with conventional imaging techniques is a challenge. In this study, we investigate use of an FDA-approved iron oxide nanoparticle, ferumoxytol, for contrast-enhanced magnetic resonance imaging of the RPCS in mouse models of normal pregnancy and PAS. We then demonstrate the translational potential of this technique in human patients presenting with severe PAS (FIGO Grade 3C), moderate PAS (FIGO Grade 1), and no PAS. Methods: A T1-weighted gradient recalled echo (GRE) sequence was used to determine the optimal dose of ferumoxytol in pregnant mice. Pregnant Gab3 -/- mice, which demonstrate placental invasion, were then imaged at day 16 of gestation alongside wild-type (WT) pregnant mice which do not demonstrate invasion. Signal-to-noise ratio (SNR) was computed for placenta and RPCS for all fetoplacental units (FPUs) with ferumoxytol-enhanced magnetic resonance imaging (Fe-MRI) and used for the determination of contrast-to-noise ratio (CNR). Fe-MRI was also performed in 3 pregnant subjects using standard T1 and T2 weighted sequences and a 3D magnetic resonance angiography (MRA) sequence. RPCS volume and relative signal were calculated in all three subjects. Results: Ferumoxytol administered at 5 mg/kg produced strong T1 shortening in blood and led to strong placental enhancement in Fe-MRI images. Gab3 -/- mice demonstrated loss of hypointense region characteristic of the RPCS relative to WT mice in T1w Fe-MRI. CNR between RPCS and placenta was lower in FPUs of Gab3 -/- mice compared to WT mice, indicating higher degrees of vascularization and interruptions throughout the space. In human patients, Fe-MRI at a dose of 5 mg/kg enabled high uteroplacental vasculature signal and quantification of the volume and signal profile in severe and moderate invasion of the placenta relative to a non-PAS case. Discussion: Ferumoxytol, an FDA-approved iron oxide nanoparticle formulation, enabled visualization of abnormal vascularization and loss of uteroplacental interface in a murine model of PAS. The potential of this non-invasive visualization technique was then further demonstrated in human subjects. Diagnosis of placental invasion using Fe-MRI may provide a sensitive method for clinical detection of PAS.

3.
PLoS One ; 18(10): e0291733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796905

RESUMO

BACKGROUND: Cardiovascular disease (CVD) is associated with the apolipoprotein E (APOE) gene and lipid metabolism. This study aimed to develop an imaging-based pipeline to comprehensively assess cardiac structure and function in mouse models expressing different APOE genotypes using photon-counting computed tomography (PCCT). METHODS: 123 mice grouped based on APOE genotype (APOE2, APOE3, APOE4, APOE knockout (KO)), gender, human NOS2 factor, and diet (control or high fat) were used in this study. The pipeline included PCCT imaging on a custom-built system with contrast-enhanced in vivo imaging and intrinsic cardiac gating, spectral and temporal iterative reconstruction, spectral decomposition, and deep learning cardiac segmentation. Statistical analysis evaluated genotype, diet, sex, and body weight effects on cardiac measurements. RESULTS: Our results showed that PCCT offered high quality imaging with reduced noise. Material decomposition enabled separation of calcified plaques from iodine enhanced blood in APOE KO mice. Deep learning-based segmentation showed good performance with Dice scores of 0.91 for CT-based segmentation and 0.89 for iodine map-based segmentation. Genotype-specific differences were observed in left ventricular volumes, heart rate, stroke volume, ejection fraction, and cardiac index. Statistically significant differences were found between control and high fat diets for APOE2 and APOE4 genotypes in heart rate and stroke volume. Sex and weight were also significant predictors of cardiac measurements. The inclusion of the human NOS2 gene modulated these effects. CONCLUSIONS: This study demonstrates the potential of PCCT in assessing cardiac structure and function in mouse models of CVD which can help in understanding the interplay between genetic factors, diet, and cardiovascular health.


Assuntos
Doenças Cardiovasculares , Iodo , Camundongos , Humanos , Animais , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Apolipoproteína E3/genética , Tomografia Computadorizada por Raios X , Camundongos Knockout , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/genética
4.
Acad Radiol ; 30(7): 1384-1391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36167627

RESUMO

INTRODUCTION: Prior preclinical studies established the utility of liposomal nanoparticle blood-pool contrast agents in visualizing the retroplacental clear space (RPCS), a marker of normal placentation, while sparing fetuses from exposure because the agent does not cross the placental barrier. In this work, we characterized RPCS disruption in a mouse model of placenta accreta spectrum (PAS) using these agents. MATERIALS AND METHODS: Contrast-enhanced MRI (CE-MRI) and computed tomography (CE-CT) using liposomal nanoparticles bearing gadolinium (liposomal-Gd) and iodine were performed in pregnant Gab3-/- and wild type (WT) mice at day 16 of gestation. CE-MRI was performed on a 1T scanner using a 2D T1-weighted sequence (100×100×600 µm3 voxels) and CE-CT was performed at a higher resolution (70×70×70 µm3 voxels). Animals were euthanized post-imaging and feto-placental units (FPUs) were harvested for histological examination. RPCS conspicuity was scored through blinded assessment of images. RESULTS: Pregnant Gab3-/- mice showed elevated rates of complicated pregnancy. Contrast-enhanced imaging demonstrated frank infiltration of the RPCS of Gab3-/- FPUs. RPCS in Gab3-/- FPUs was smaller in volume, demonstrated a heterogeneous signal profile, and received lower conspicuity scores than WT FPUs. Histology confirmed in vivo findings and demonstrated staining consistent with a thinner RPCS in Gab3-/- FPUs. DISCUSSION: Imaging of the Gab3-/- mouse model at late gestation with liposomal contrast agents enabled in vivo characterization of morphological differences in the RPCS that could cause the observed pregnancy complications. An MRI-based method for visualizing the RPCS would be valuable for early detection of invasive placentation.


Assuntos
Nanopartículas , Placenta , Feminino , Gravidez , Animais , Camundongos , Placenta/diagnóstico por imagem , Meios de Contraste , Imageamento por Ressonância Magnética , Modelos Animais de Doenças , Estudos Retrospectivos , Proteínas Adaptadoras de Transdução de Sinal
5.
Theranostics ; 12(12): 5504-5521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910789

RESUMO

The abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state. Methods: Cell SELEX was used to identify novel thioaptamers specifically binding hyperphosphorylative cells. Cell surface vimentin was identified as a potential binding target of the aptamer. Novel molecular magnetic resonance imaging (M-MRI) probes using these aptamers and a small molecule ligand to vimentin were used for in vivo detection of this pre-pathological state. Results: In a mouse model of pathological tau, we demonstrated in vivo visualization of the hyperphosphorylative state by M-MRI, enabling the identification at a pre-pathological stage of mice that develop frank tau pathology several months later. In vivo visualization of the hyperphosphorylative state by M-MRI was further validated in a second mouse model (APP/PS1) of Alzheimer's disease again identifying the mutants at a pre-pathological stage. Conclusions: M-MRI of the hyperphosphorylative state identifies future tau pathology and could enable extremely early-stage diagnosis of Alzheimer's disease, at a pre-patholgical stage.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/patologia , Animais , Biomarcadores , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Vimentina , Proteínas tau/metabolismo
6.
Sci Rep ; 10(1): 16185, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999398

RESUMO

In these preclinical studies, we describe ADx-001, an Aß-targeted liposomal macrocyclic gadolinium (Gd) imaging agent, for MRI of amyloid plaques. The targeting moiety is a novel lipid-PEG conjugated styryl-pyrimidine. An MRI-based contrast agent such as ADx-001 is attractive because of the lack of radioactivity, ease of distribution, long shelf life, and the prevalence of MRI scanners. Dose-ranging efficacy studies were performed on a 1 T MRI scanner using a transgenic APP/PSEN1 mouse model of Alzheimer's disease. ADx-001 was tested at 0.10, 0.15, and 0.20 mmol Gd/kg. Gold standard post-mortem amyloid immunostaining was used for the determination of sensitivity and specificity. ADx-001 toxicity was evaluated in rats and monkeys at doses up to 0.30 mmol Gd/kg. ADx-001 pharmacokinetics were determined in monkeys and its tissue distribution was evaluated in rats. ADx-001-enhanced MRI demonstrated significantly higher (p < 0.05) brain signal enhancement in transgenic mice relative to wild type mice at all dose levels. ADx-001 demonstrated high sensitivity at 0.20 and 0.15 mmol Gd/kg and excellent specificity at all dose levels for in vivo imaging of ß amyloid plaques. ADx-001 was well tolerated in rats and monkeys and exhibited the slow clearance from circulation and tissue biodistribution typical of PEGylated nanoparticles.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Meios de Contraste/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Placa Amiloide/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Meios de Contraste/farmacocinética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/genética , Placa Amiloide/metabolismo , Presenilina-1/genética , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA